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resumo 
 

 

O principal objectivo desta tese consistiu em fornecer informação sobre boto 
(Phocoena phocoena) no Nordeste da Península Ibérica (NOPI), uma vez que 
esta espécie é designada como “Vulnerável” em Espanha e Portugal (Catálogo 
Nacional de Especies Amenazadas, Lei 4/1989, 2000; Livro vermelho dos 
vertebrados de Portugal) e está incluida no Anexo II da Directiva Habitats, 
requerendo assim a designação  de Áreas Especiais de Conservação (AEC) 
pelos estados membros da UE. O estudo das populações desta espécie é uma 
prioridade e tanto a IWC (International Whaling Commission) como a ICES 
(International Council for the Exploration of the Sea) recomendam a realização 
de estudos para determinar a sua estrutura populacional e desenvolver 
estratégias de gestão adequadas, de forma a reduzir os impactos negativos nas 
populações. Adicionalmente, o estudo da distribuição, abundância e dinâmica 
populacional de cetáceos são considerados em alguns membros da EU 
indicadores do “Bom Estado Ambiental” das águas marinhas europeias, segundo 
a Directiva Quadro Estratégia Marinha (DQEM). 
 
Como a conservação requer o conhecimento da distribuição e estrutura 
populacional das espécies, neste estudo a estrutura populacional do boto no 
nordeste Atlântico e Mar Negro foi examinada utilizando dez microsatélites e a 
variação da região controlo do ADN mitocondrial (mtADN). A análise de 
microsatélites detectou três grupos genéticos principais: a Península Ibérica, o 
restante nordeste Atlântico e o Mar Negro. Uma rede de haplótipos mitocondriais 
evidenciou o isolamento das populações do Mar Egeu-Mármara e do Mar Negro. 
A análise de microsatélites e de mtADN não detectou diferenças genéticas entre 
a Galiza e Portugal, nem qualquer padrão de estrutura genética populacional ao 
longo da costa Ibérica. No entanto, ocorreram diferenças entre a Península 
Ibérica e as restantes populações analisadas. Ambos os marcadores mostraram 
níveis de diversidade genética mais baixos na Península Ibérica 
comparativamente com outras populações, excepto as populações dos mares 
Egeu, Mármara e Negro. Os níveis de divergência detectados não aparentam 
dever-se a isolamento por distância, mas antes a segregação populacional 
devido a condições oceanográficas, já que os afloramentos costeiros presentes 
no oeste Ibérico e no nordeste Africano apresentam condições adequadas para a 
ocorrência de boto. Assim, os dados genéticos sugerem que os animais da 
Península Ibérica e do oeste Africano deverão ser considerados como uma 
população separada. 
 
De seguida, foram aplicadas técnicas de modelação de habitat para estudar a 
distribuição de boto, uma vez que representam uma ferramenta poderosa para  
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descrever e prever a distribuição de cetáceos e compreender os processos 
ecológicos que influenciam essas distribuições. Foram utilizados dois métodos 
para a recolha de dados de distribuição de cetáceos, pela ONG CEMMA 
(Coordinadora para o Estudo dos Mamíferos Mariños): 1. monitorizações 
dedicadas de barco, realizadas em águas costeiras Galegas, de 2003-2010; 2. 
monitorizações mensais em pontos costeiros localizados ao longo da costa 
Galega, de 2003 a 2011. Os resultados das monitorizações de barco mostraram 
que: i) estados do mar superiores influenciaram negativamente a detecção de 
botos; ii) a largura do campo de visão tem um efeito positivo; iii) a melhor 
velocidade de barco para monitorizar boto é aproximadamente seis nós. 
Verificou-se a ocorrência de variação inter-anual, com um aumento significativo 
de observações em 2005 e ausência de detecções em 2006. Em contraste, não 
se verificou a influência das variáveis mês ou profundidade na presença de boto. 
Diversas variáveis ambientais parecem ser importantes para explicar a presença 
de botos, já que: i) foram maioritariamente visto em águas de temperaturas 
médias; ii) à medida que a concentraçao de clorofila e a profundidade da zona 
eutrófica (ZE) aumentam, verifica-se um aumento na probabilidade de presença 
de boto; iii) verificou-se uma relação positiva entre o número de avistamentos e a 
ocorrência de inclinações do fundo marinho mais acentuadas e viradas a sul. Por 
sua vez, a análise de avistamentos costeiros mostrou que cinco variáveis 
parecem influenciar a capacidade de detecção de botos, pelos observadores, 
nomeadamente: i) a duração da observação; ii) o campo de visão, que 
apresentou uma relação positiva com o número de avistamentos; iii) verificou-se 
um decréscimo linear nos avistamentos à medida que o Beaufort aumenta; iv) 
botos foram avistados mais frequentemente com valores de Douglas entre 2 e 3; 
v) a presença de roaz (Tursiops truncatus) teve um efeito negativo na presença 
de botos. Verificou-se um padrão temporal durante o período de estudo, com um 
aumento do número de avistamentos ao longo dos anos. De igual modo, 
verificou-se um aumento do número de avistamentos no final do dia e em 
localizações mais a norte, com maior número de detecções em Lugo e A Coruña. 
Condições ambientais também parecem afectar a distribuição de botos, a partir 
de pontos costeiros: foram detectados mais animais em águas onde a 
profundidade da ZE era superior, onde a profundidade era mais variável, onde a 
inclinação do fundo marinho era superior e onde a plataforma continental era 
mais estreita. 
 
Por último, foram analisados os arrojamentos de boto recolhidos pela CEMMA na 
Galiza, de 1990 a 2013, e pela Sociedade Portuguesa de Vida Selvagem (SPVS) 
em Portugal, de 2000 a 2013. Foram registados 424 arrojamentos desta espécie 
na área de estudo. Verificou-se a ocorrência de arrojamentos ao longo do ano, 
bem como diferenças inter-anuais, com um acréscimo no número de 
arrojamentos com o tempo. Os números mais elevados de arrojamentos 
ocorreram em 1998 na Galiza e em 2011 em Portugal. De igual modo, verificou-
se a ocorrência de diferenças de diferenças no número de arrojamentos entre 
meses. Em particular, enquanto que na Galiza os arrojamentos foram mais 
comuns no Inverno, com um pico em Março e Abril, em Portugal o pico de 
arrojamentos foi detectado em Maio. Dados de ambas as áreas mostram um 
maior número de arrojamentos no Inverno comparativamente com o Verão. 
Verificou-se um aumento no número de arrojamentos de boto de norte para sul, 
com picos em duas regiões: a sub-area 5 e 9. No geral, o rácio sexual nos 
arrojamentos foi aproximadamente de 1:1, apesar de o número de fêmeas ser 
ligeiramente inferior em Portugal. O comprimento total dos animais variou de 81 
a 202 cm, com um tamanho médio de 146.66 cm, com botos maiores em 
Portugal comparativamente com a Galiza e com as fêmeas maiores que os 
machos. No geral, 33.4% dos botos arrojados apresentaram evidências de 
captura acidental em artes de pesca, com uma proporção superior na costa 
Portuguesa (56.0%) comparativamente com a costa Galega (26.2%), o que 
poderá dever-se a diferenças no tipo de artes de pesca usadas em cada área.  
 
Os resultados do presente estudo mostram evidências de ausência de estrutura  
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genética na população de boto no NPI e um claro isolamento desta população 
comparativamente com outras populações do nordeste Atlântico e Mar Negro, 
devido à importante influência de processos oceanográficos, como correntes e 
afloramento costeiro. Estes resultados suportam a recomendada definição da 
população de boto da Península Ibérica como uma separada unidade de gestão 
para a DQEM e também a definição de uma terceira sub-espécie, Phocoena 
phocoena meridionalis. Tanto os resultados de avistamentos como os de 
arrojamentos mostraram que esta espécie está presente na área de estudo 
durante todo o ano, com variações temporais (anos, meses) e espaciais (sub-
áreas), sugerindo a movimentação dos animais entre áreas. Assim, i) as áreas 
protegidas não podem ser sazonais, uma vez que esta espécie está presente 
durante todo o ano; ii) a Galiza é uma das áreas importantes para boto na 
Península Ibérica, quando também pode ser o caso do Golfo de Cádiz, com 
quatro localizações a apresentar elevada ocorrência desta espécie: Punta 
Candieira, Vilán e Cabo Touriñán, Punta Remedios (Lira) e Faro de Corrubedo; 
iii) as áreas utilizadas por boto e roaz são distintas. Adicionalmente, enquanto 
que parte da população de roaz foi descrita como sendo residente, a população 
de boto não parece comportar-se de igual modo; assim, a mesma AEC não será 
útil para ambas espécies, a não ser que seja suficientemente grande para 
abranger as áreas utilizadas por ambas. 
 
A captura acidental em artes de pesca é uma das principais ameaças para 
pequenos cetáceos, especialmente boto, e constitui um factor preocupante na 
conservação desta espécie em áreas com elevado esforço de pesca, como NIP. 
Foi descrita uma maior proporção de captura acidental de boto na costa 
Portuguesa relativamente à Galega, potencialmente devido às diferenças nas 
artes de pesca usadas em cada área. De qualquer forma, em ambas as áreas 
(Galiza e Portugal) a mortalidade devido a captura acidental é insustentável, 
considerando o limite de mortalidade de 1.7% definido pela ASCOBANS (1997). 
No entanto, captura acidental em artes de pesca não constitui a única ameaça 
para esta espécie e é essencial a realização de mais estudos para enriquecer o 
conhecimento sobre os botos na Península Ibérica e suportar a sua 
conservação. 
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abstract 

 
The main aim of this thesis was to provide information about harbour porpoises 
(Phocoena phocoena) in the North Western Iberian peninsula (NWIP), as they 
are designated as ”vulnerable” in Spain (Catálogo Nacional de Especies 
Amenazadas, Law 4/1989, 2000; Livro vermelho dos vertebrados de Portugal) 
and are included in Annex-II of the EU Habitats Directive, thus requiring the 
designation of Special Area of Conservation (SAC) by EU Member States in 
areas of critical habitat. The study of their populations is a priority issue and both 
IWC (International Whaling Commission) and ICES (International Council for the 
Exploration of the Sea) recommended studies to determine the population 
structure and develop appropriate management in order to reduce negative 
impacts on the populations. Also, the distribution, abundance and population 
dynamics of cetaceans are considered in some EU members as indicators of 
Good Environmental State (GES) of the EU’s marine waters under the Marine 
Strategy Framework Directive (MSFD). 
 
As conservation requires an understanding of the species´ distribution and 
population structure, the population structure of the harbour porpoise in the North 
East Atlantic and Black Sea was examined using ten DNA microsatellite markers 
and sequence variation from the mitochondrial control region. A Structure-based 
analysis of microsatellite structure identified three main genetic groups: the 
Iberian Peninsula, the rest of Northeast Atlantic, and the Black Sea. A median 
joining network of mtDNA sequences highlights the isolation of the Aegean-
Marmara Sea and Black Sea populations. Neither microsatellite nor 
mitochondrial DNA markers detected genetic differentiation between Galicia and 
Portugal, nor any significant pattern of population genetic structure along the 
Iberian coast. However there were differences between Iberia and the rest of the 
populations studied. Values of genetic diversity for both markers were lower in 
the Iberian Peninsula than in all the other populations except those in Aegean, 
Marmara and Black Seas. Levels of divergence clearly cannot be explained by 
isolation by distance but instead are likely to be associated with population 
separation based upon oceanographic conditions due to the presence of 
upwelling conditions in West Iberia and North West Africa providing suitable 
conditions for porpoises. Overall the genetic data suggest that the Iberian 
Peninsula and West Africa should be considered as a separate population. 
 
Secondly, habitat modelling was used as it represents a potentially powerful tool 
for describing and predicting cetacean distributions and understanding the 
ecological processes determining these distributions. Two data collection 
methods were used by the NGO CEMMA (Coordinadora para o Estudo dos 
Mamíferos MAriños): 1. Targeted boat surveys were carried out in Galician 
coastal waters during the years 2003-2010. 2. Data from systematic monthly  
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surveys from a series of evenly spaced observation points along the Galician 
coast were collected from 2003 to 2011. Results from boat surveys showed that: 
i) higher sea state negatively influenced the detection of porpoises, ii) field-of-
view width had a positive effect; and, iii) the best boat speed for monitoring 
harbour porpoises is around 6 knots. There was interannual variation with a 
significant increase in the number of sightings in 2005 and no  detections in 
2006.  In contrast, no significant differences in porpoise presence were seen 
between months or in relation to depth. Several environmental variables were 
found to be important to explain the presence of porpoises: i) they were mostly 
seen in waters with medium temperatures; ii) as chlorophyll concentration and 
the depth of the eutrophic zone increase there was an increase in the probability 
of porpoise presence; iii) finally, there were positive relationships between 
number of sightings and both steeper seabed slope and its facing to the South. 
The analysis of coastal observations showed that five variables had some 
influence on the observers in relation to the detection of porpoises. i) the duration 
of the observation; and, ii)  the field of view had positive relationships with 
sightings; iii) there was a linear decrease in sightings as the Beaufort value 
increases; iv) porpoises were most frequently seen when Douglas values were in 
the range 2 to 3, and v) the presence of bottlenose dolphins (Turisops truncatus) 
had a negative effect on porpoise presence. There was a temporal trend during 
the study period, with an increase in the number of sightings over the years. 
Also, there was an increase in the number of sightings later in the day, and the 
number of sightings increased northwards with more detections in Lugo and A 
Coruña (Northern stations). Environmental variables also appear to affect 
porpoise distribution: more porpoises were detected in waters where the depth of 
the eutrophic zone (ZEU) was higher, depth was more variable, seabed slope 
was greater and the continental shelf was narrower. 
 
Finally, stranding data from 1990 to 2013 from Galicia recorded by CEMMA and 
from 2000 to 2013 from Portugal recorded by Sociedade Portuguesa de Vida 
Selvagem (SPVS) were analysed. A total of 424 strandings of harbour porpoises 
were recorded in the whole area. The results showed that porpoise strandings 
occur throughout the year, with differences between years. The highest numbers 
of porpoises stranded were recorded in Galicia in 1998, and in Portugal in 2011. 
Also differences between months were found. In Galicia porpoise strandings 
were more common in winter with a peak in March and in April; and in Portugal a 
peak in May was detected. When analysing data from both areas together, the 
number of strandings is higher in winter than in summer. There was an increase 
in the number of porpoises stranded from North to South with two regions having 
the most strandings: sub-areas 5 and 9. Overall, sex ratio in strandings was 
close to 1:1, although the number of females was slightly lower in Portugal. The 
total body length ranged from 81 to 202 cm with a mean length of 146.66 cm, the 
Portuguese porpoises being larger than Galician, and females larger than males. 
Overall, 33.4% of the stranded porpoises had signs of by-catch with a higher 
proportion in the Portuguese coast (56.0%) than in the Galician coast (26.2%), 
which could be due to the difference of the gears used in each area by 
fishermen. 
 
Results provide evidence of an absence of genetic structure in the harbour 
porpoise population along the WIP and a clear isolation of this population from 
the populations of the North East Atlantic and Black Sea, with an important 
influence of the predominant oceanographic features such as currents and 
upwelling. These results support the recommended definition of Iberian 
Peninsula as a separated management unit for harbour porpoise for the MSFD 
and also the definition of a third subspecies, Phocoena phocoena meridionalis. 
Both sightings and strandings showed that porpoises are present in the area all 
year around with variations in the number of sightings between years, months 
and subareas, which leads us to think that they may move between areas. Thus, 
i) protected areas cannot be seasonal, because the species is present 
throughout the year, ii) Galicia is one of the key areas in the Iberian peninsula,  
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with four localities with particularly high occurrence of porpoises: Punta 
Candieira, Vilán and Touriñán Cape, Punta Remedios (Lira) and Faro de 
Corrubedo, iii) the main areas used by harbour porpoises and bottlenose 
dolphins are different. Moreover, while a part of the bottlenose dolphin population 
was described as a resident population, the porpoise population does not seem 
to behave in the same way; therefore the same SAC is not going to be useful for 
both species, unless it is big enough to cover those different areas. 
 
It is well known that by-catch is one of the principal threats for small cetaceans, 
especially harbour porpoises, and it is of concern in an area of high fishing effort 
such as WIP. A higher proportion of by-caught porpoises was found on the 
Portuguese coast than on the Galician coasts, maybe due to the difference in the 
fishery arts used in each area. In any case, in both areas (Galicia and Portugal) 
bycatch mortality is unsustainable as the limit of mortality of 1.7 % of the best 
population estimate according to ASCOBANS (1997). However by-catch is not 
the only threat for this species, and is essential to carry out further studies to 
enrich the knowledge about Iberian harbour porpoises and to support its 
conservation. 
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resumen 

 
El objetivo principal de esta tesis fue proporcionar información sobre la marsopa 
(Phocoena phocoena) en el noroeste de la península ibérica (NOPI), ya que está 
clasificadas como especie “Vulnerable” en España (Catálogo Nacional de 
Especies Amenazadas, Ley 4/1989, 2000; Livro vermelho dos vertebrados de 
Portugal) y está incluida en el Anexo-II de la Directiva Hábitats de la UE, 
requiriendo la designación de Areas de importancia para la Conservación (AIC) 
por parte de los Estados Miembros de la UE en áreas de hábitats críticos. El 
estudio de su población es una cuestión prioritaria y tanto la CBI (Comisión 
Ballenera Internacional) y el ICES (International Council for the Exploration of the 
Sea) recomiendan estudios que determinen la estructura poblacional y que 
desarrollen una gestión apropiada para reducir los impactos negativos sobre la 
población. Así mismo, se considera en algunos estados miembros de la EU la 
distribución, abundancia y dinámica poblacional de los cetáceos como 
indicadores de “buen estado medioambiental” de las aguas marinas de la UE 
bajo la Directiva Marco sobre la Estrategia Marina (DEME). 
 
Ya que la conservación requiere un conocimiento de la distribución y estructura 
poblacional, aquí se examinó la estructura poblacional de las marsopas del 
noreste Atlántico y mar Negro usando diez marcadores ADN microsatélite y la 
secuenciación de la variación de la región control mitocondrial. El análisis 
Structure del ADN microsatélite identificó 3 grupos principales: la Península 
Ibérica, el resto del Atlántico noreste, y el mar Negro. El análisis de median 
joining network destacó el aislamiento de la población del mar Egeo, Mármara y 
Negro. Ni los DNA microsatélite ni el DNA mitocondrial detectó diferencia alguna 
entre Galicia y Portugal, ni tampoco patrón significativo alguno en la estructura 
poblacional a lo largo de la costa ibérica. En cualquier caso, hubo diferencias 
entre la península ibérica y el resto de las poblaciones estudiadas. Los valores 
de variabilidad genética en ambos marcadores fueron más bajos en la península 
ibérica que en el resto de las poblaciones estudiadas, excepto las del mar Egeo, 
Mármara y Negro. Los niveles de divergencia claramente no explican el 
aislamiento por distancia, pero en cambio posiblemente puede asociarse con la 
separación de las poblaciones por las condiciones oceanográficas presentes por 
la presencia de las condiciones de upwelling en el oeste peninsular y el noroeste 
de África, que proporcionan unas condiciones favorables para la marsopa. En 
general los datos genéticos sugieren que la península ibérica y el oeste africano 
deberían ser considerados como una población separada. 
 
En segundo lugar, se usó la modelización del hábitat ya que representa una 
herramienta potencialmente potente para describir y predecir la distribución de 
los cetáceos y entender los procesos ecológicos que determinan esas  
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distribuciones. Se usaron dos métodos de toma de datos por la ONG CEMMA 
(Coordinadora para o Estudo dos Mamíferos MAriños): 1. Emarques específicos 
desarrollados en aguas costeras gallegas durante los años 2003 – 2010. 2. 
Datos del seguimiento sistemático mensual en una serie de puntos de 
observación distribuidos homogéneamente a lo largo de la costa gallega 
recogidos de 2003 a 2011. Los resultados de los embarques mostraron que: i) 
valores altos de estado del mar influyen negativamente en la detección de 
marsopas; ii) el ancho de campo de observación tiene un efecto positivo; y, iii) la 
mejor velocidad del barco para el muestreo de marsopas fue de 6 nudos. Hubo 
variabilidad interanual con un aumento significativo del número de avistamientos 
en 2005 y sin detecciones en 2006. Por el contrario, no hubo diferencias 
significativas en la presencia de marsopas entre meses o en relación a la 
profundidad. Se encontró que varias variables medioambientales eran 
significativas para explicar la presencia de marsopa: i) se vieron principalmente 
en aguas con temperaturas medias; ii) al aumentar la concentración de clorofila 
y la profundidad de la zona eutrófica, aumenta la probabilidad de presencia de 
marsopa; iii) finalmente, hubo una relación positiva entre el número de 
avistamientos y tanto la mayor pendiente de los fondos como su orientación al 
sur.El análisis de las observaciones costeras mostraron que cinco variables 
tenían alguna influencia sobre los observadores en relación a la detección de 
marsopas: i) la duración de la observación, y ii) el ancho de campo,  tuvieron una 
relación positiva con los avistamietnos; iii) hubo una disminución linear en los 
avistamientos al aumentar los valores de Beaufort; iv) las marsopas se vieron 
más frecuentemente cuando los valores de Douglas estaban entre 2 y 3; y v) la 
presencia de delfines mulares (Turiops truncatus) tuvo un efecto negativo en la 
presencia de marsopas. Durante el periodo de estudio hubo una tendencia 
temporal con el aumento del número de avistamiento a lo largo de los años. Así 
mismo, hubo un aumento en el número de avistamientos al final del día, y el 
número de avistamientos aumentó hacia el norte con más detecciones en Lugo y 
A Coruña (estaciones más norteñas). Las variables medioambientales también 
parecieron afectar la distribución de las marsopas: se detectaron más marsopas 
en aguas con la profundidad de la zona eutrófica mayor, zonas de profundidad 
más variable, pendiente del fondo marino mayor y plataforma continental más 
estrecha. 
 
Finalmente, se analizaron los datos de varamientos recogidos desde 1990 a 
2013 por la CEMMA  en Galicia y de 2000 a 2013 por la Sociedade Portuguesa 
de Vida Selvagem (SPVS) en Portugal. Se registraron un total de 424 
varamientos de marsopa en toda la zona. Los resultados mostraron que los 
varamientos de marsopa ocurren a lo largo de todo el año con diferencias entre 
ellos. El mayor número de varamientos registrado en Galicia fue en 1998 y en 
Portugal en 2011. También se detectaron diferencias entre meses. En Galicia los 
varamientos de marsopa fueron más comunes en invierno con un pico en Marzo 
y Abril, y en Portugal se detectó el pico en Mayo. Al analizar conjntamente los 
datos de ambas zonas, el número de varamientos es mayor en invierno que en 
verano. Hubo un aumento de las marsopas varadas del norte al sur, teniendo 
dos zonas la mayoría de los varamientos: subárea 5 y 9. En general, la 
proporción de sexos fue cercana a 1:1, aunque el número de hembras fue 
ligeramente menor en Portugal. La longitud total del cuerpo varió entre 81 a 202 
cm, con una longitud media de 146.66 cm, siendo las marsopas portuguesas 
mayores que las gallegas, y las hembras más grandes que los machos. En total, 
un 33.4% de las marsopas varadas tenían signos de captura accidental, con una 
mayor proporción en las costas portuguesas (56.0%) que en las gallegas 
(26.2%), lo que podría ser debido a las artes de pesca usadas en cada zona por 
los marineros. 
 
Los resultados muestran evidencias de la ausencia de una estructura genética 
poblacional de las marsopas en la costa noroccidental peninsular y un claro 
aislamiento de esta población con otras del noreste atlántico y del mar Negro, 
con una influencia importante de las características oceánicas predominantes 
como las corrientes y el upwelling. Estos resultados apoyan la recomentación de 
la definición de la Península Ibérica como una  unidad de gestión de marsopa 
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separada para el DEME y así mismo la definición de una tercera especie, 
Phocoena phocoena meridionalis. Tanto los avistamientos como los varamientos 
mostraron que las marsopas están presentes en el area todo el año con 
variaciones en el número de avistamietnos entre años, meses y subáreas, lo que 
nos lleva pensar que deben de moverse entre zonas. Por lo tanto, i) las zonas de 
protección no pueden ser estacionales, al estar la especie presente a lo largo de 
todo el año; ii) Galicia parece ser una de las zonas clave en la Península Ibérica, 
junto  probablemente con el golfo de Cádiz, con cuatro localidades con una 
particular presencia de marsopa: Punta Candieira, Cabo Vilán y Touriñán Cape, 
Punta Remedios (Lira) y Faro de Corrubedo; iii) las áreas principales usadas por 
las marsopas y los delfines mulares son diferentes. Además, mientras que parte 
de la población de delín mular ha sido descrita como residente, la población de 
marsopa no parece comportarse del mismo modo, y por lo tanto el mismo AIC 
no va a ser útil para ambas especies, salvo que sea lo suficientemente grande 
como para cubrir ambas zonas.  
 
La captura accidental es considerada como uno de los principales amenazas 
para los pequeños cetáceos, especialmente marsopas, y es preocupante en una 
zona de gran presión pesquera como la noroccidental peninsular. Se detectó 
una mayor proporción de capturas accidentales en las costas portuguesas que 
en las gallegas, tal vez debido al uso de distintas artes de pesca en cada zona. 
En cualquier caso, en ambas áreas (Galicia y Portugal) la mortalidad por captura 
accidental es insostenible según el límite de mortalidad del 1.7% de la mejor 
estima poblacional de acuerdo con ASCOBANS (1997). De todas formas, la 
captura accidental no es la única amenaza para esta especie, y es básico llevar 
a cabo más estudios para aumentar el conocimiento de las marsopas ibéricas y 
apoyar su conservación. 
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This thesis concerns aspects of the ecology and population structure of harbour porpoise in 

the Iberian Peninsula. In the present chapter the rationale for studying marine mammals is 

outlined and the study species and study area are described. The chapter also reviews threats 

to porpoises and current conservation legislation. Finally, it presents the objectives of the 

thesis. 

The importance of studying marine mammal ecology.  

There are several reasons that support the study of marine mammals beyond the increase of 

knowledge about the species that inhabit the marine environment. Marine mammals are 

apex/top predators, and have very few or no natural predators. Then, they can play an 

important role as top-down regulators of ecosystem functioning (Estes et al 1998, 2004, 

Williams et al 2004, Morrisette et al 2012, Santos et al 2014), and significant variation in their 

abundance or distribution may influence other species and ecosystem processes through a 

trophic cascade. The most well-known example is the one involving sea otter (Enhydra lustris), 

sea urchins and kelp forest (review in Estes 2005). Sea otters prey on sea urchins, which are 

the major kelp consumers. Because of the eradication of otters from vast coastal areas, sea 

urchins increased to a point where kelp forests were rare or had completely disappeared. This 

changed seascape appearance, ecosystem productivity, nutrient cycling, growth rates of 

mussels and barnacles and densities of several fishes. Similar effects were found in areas 

where killer whales (Orcinus orca) began to predate on sea otters, probably triggered by 

fisheries depletion which reduced killer whale main prey. Such change added a new top 

predator and trophic level to the system, leading to a decline of the sea otter population, an 

increase of sea urchins and, again, a depletion of kelp forests (Estes et al 1998). Some species 

of marine mammals are described as keystone species, due to their influence in ecosystems, 

i.e. a species that have an important impact on the ecosystems relative to their abundance 

(Paine 1980), leading some times to trophic cascade. Alteration of the marine food webs due 

to the decrease of a cetacean species has also been reported in the Bering Sea (Merrick et al 

1997) the North Pacific Ocean (Croll et al 2006) and the Baltic Sea (Österblom et al 2007). 

Also, marine mammals may be influenced by bottom-up regulation. Oceanic and atmospheric 

climate shifts affected the key species of prey consumed by Steller sea lions (Eumetopias 

jubatus) in the western Gulf of Alaska and in the Aleutian Islands (Cury and Shannon 2004), by 

marine birds and seals in southern Benguela (Trites et al 2007), spinner dolphins (Stenella 
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longirostris) in Hawaii (Benoit-Bird and McManus 2012) or killer whales in Northeast Pacific 

(Ford et al 2010) leading to a decrease in their abundance. 

There are many factors that can cause changes in the abundance and/or distribution. One of 

the principal threats for cetaceans worldwide is interactions with fisheries, directly through 

bycatch (Jefferson and Curry 1994, Perrin et al 1994, Lasalle et al 2012, Read 2013), or 

indirectly by the overexploitation of prey, which can also have unpredictable consequences for 

ecosystem dynamics (Baum and Worm 2009, Navia et al 2012). Other threats include pollution, 

environmental changes such as climate change, ship strikes and underwater noise (e.g. Jepson 

and Baker, Jepson et al 1998, 2003, 2005, ACCOBAMS 2005, Cox et al 2006, Learmonth et al 

2006, MacLeod et al 2009, Fernández et al 2012, IWC 2012, Lambert et al 2014). 

Moreover, they are considered as sentinels because, due to their position at the top of the 

food chain, they are vulnerable to bioaccumulation and biomagnification, and their life history 

makes them vulnerable to human-induced alterations of the ecosystem. As sentinels, they may 

be an early warning system for contamination by chemicals (e.g. mercury, DDT 

(Dichlorodiphenyltrichloroethane), PCB (polychlorinated biphenyls)), climate change, changes 

in food webs and disease pathways (Ross 2000, Moore 2008, Burek et al 2008, Bossart 2011, 

ICES 2014). For example, in the North Pacific and Arctic, grey whales (Eschrichtius robustus) 

had changes in their distribution and behaviour correlated with changes in their environment 

(Moore 2008).  Another example is the study of PCB in three species of cetaceans in the UK 

(Law et al 2012).  Concentrations of PCBs in harbour porpoises showed a decline in the early 

to-mid 1990s, followed by a “steady-state” plateau (1998–present) due to regulation of use, 

but are still at toxicologically significant levels in many harbour porpoises and regularly occur 

at even higher levels in bottlenose dolphins and killer whales due to their higher trophic level 

in marine food chains, with the highest risk of individual and population level toxicities. 

As species that usually need large areas for foraging and breeding, the area needed to protect 

marine mammals is expected to be also useful for species that are less demanding. Besides, 

marine mammals are charismatic and capture the attention and concern of the public, which 

can help to promote actions for their conservation and for conservation in general. They are 

ideal material for education and dissemination, as the general public is usually more easily 

captured by charismatic species than by difficult concepts. Then, they can be used as 

“umbrella species” or “flagship” species. 
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Some authors (e.g. Roberge and Angelstam 2004) suggest that the definition of an umbrella 

species for conservation expecting the protection of a large number of co-occurring species is 

not enough, as some species are limited by ecological factors that are not relevant to the 

umbrella species or the protection of a higher taxon may not necessarily confer protection to 

assemblages from other taxa. In contrast, multi-species strategies for conservation are more 

useful. This is the case of the “focal species” approach (Lambeck 1997), which for each 

landscape type, the most sensitive group of species in terms of resources, area requirements, 

connectivity, and natural processes should be selected. The critical habitat requirements of 

each focal species are used to define the amount and configuration of habitats that must be 

present in the landscape and are then used to help form a single management plan based 

around each of the causes of decline, as it assumed that because the most demanding species 

are selected, a landscape designed and managed to meet their needs will encompass the 

requirements of all other species similarly threatened. This multi-species approach is not 

usually used in marine environments and shows several limitations (Zacharias and Roff 2001): 

the spatial and temporal variation in many marine communities and most species are 

generalist (while exhibiting prey preference), the requirement that an umbrella species be 

non-migratory and the assumption that protecting generalist feeders will protect other species 

associated with the generalists may be an unwise management approach. 

In any case, marine mammals are an excellent candidates to be indicators of the condition of 

the marine environment, fulfilling many of the criteria defined by International Council for the 

Exploration of the Sea (ICES 2001), Marine Strategy Framework Directive (MSFD) (Directive 

2008/56/EC) and OSPAR (2012) to be good bioindicators of Good Envrionmental State (GES). 
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The harbour porpoise (Phocoena phocoena). 

Phylogeny and distribution. 

There are six species of porpoises (Family Phocoenidae), and the harbour porpoise, Phocoena 

phocoena (Linnaeus 1758), is one of the three recognized species of the genus Phocoena (Read 

1999): Phocoena phocoena phocoena, P. p. relicta and P. p. vomerina. It is one of the smallest 

cetaceans and has a wide distribution in coastal and continental shelf temperate and subarctic 

waters of the Northern Hemisphere (Gaskin 1984, Read 1999); it has also been reported in 

deep oceanic waters between major land masses (Donovan and Bjørge 1995, NAMMCO 1998, 

2013, Teilmann and Dietz 1998, Skov et al 2003, Read and Westgate 1997). 

 

Figure 1. Harbour porpoise (Phocoena phocoena) adult and calve (drawing by Tokio). 

Three subspecies have been differentiated based on their isolated distributions: P. p. phocoena 

in the North Atlantic, P. p. relicta in the Black Sea, and P. p. vomerina in the Pacific (Fig. 2). 

Variations were also found in morphometric data (Kinzie 1985, Miyazaki et al 1987, Yurick and 

Gaskin 1987, Amano and Miyaza 1992, Gol’din 2004, Viaud-Martinez et al 2007, De Luna et al 

2012) and genetics (Rosel et al 1995, Viaud-Martinez et al 2007, Fontaine et al 2010, 2012). 
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Figure 2. Distribution of the three subspecies of harbour porpoise (created from: 

http://www.vertebradosibericos.org/mamiferos/distribucion/phophodi.html, 

http://www.nmfs.noaa.gov/pr/pdfs/rangemaps/harborporpoise.pdf, 

http://maps.iucnredlist.org/map.html?id=17027). 

In the Eastern North Atlantic, harbour porpoise is found from Spitsbergen, North Norway (77° 

N; Bjørge and Øien 1995) to Senegal coast at West Africa (20° N; Boisseau et al 2007). Along 

the Atlantic coast from France in 1990s it was considered “rare” but a recovery was detected 

since 1999 (Jauniaux et al 2002, Jung et al 2009, Alfonsi et al 2012). There is also an apparent 

distribution gap from the Strait of Gibraltar to Agadir, central coast of Morocco (Van 

Waerebeek 2007, Boisseau et al 2007). In the Macaronesia region, Barreiros et al (2006) 

reported a stranding at Terceira Island that led the authors assume the existence of a local 

population in Azorean waters but, despite coastal and offshore monitoring and the existence 

of a regular whale-watching industry on several islands, there have been no other records 

(Silva et al 2014). Harbour porpoises were also recorded around the Canary Islands as vagrants 

(Martin et al 1992, Carrillo 2007), but there are no records from Madeira. 

It is considered extinct in the Mediterranean Sea (Gaskin 1984, Blanco and Gonzalez 1992, 

Frantzis et al 2001), although it is present in the Aegean Sea (Güçlüsoy 2009, Frantzis et al 

2001, Tonay and Dede 2013), and Marmara Sea (Dede et al 2008, Ozturk et al 2009, Tonay et al 

2009, Güçlüsoy 2009). The presence of porpoises in the Aegean Sea could be explained by the 

dispersion of the species from the Black and Marmara Seas, which is the most likely 

explanation, or it could be a remnant of the population that was formerly dispersed more 

widely through the Mediterranean Sea (Frantzis et al 2001). 

http://www.vertebradosibericos.org/mamiferos/distribucion/phophodi.html
http://www.nmfs.noaa.gov/pr/pdfs/rangemaps/harborporpoise.pdf
http://maps.iucnredlist.org/map.html?id=17027
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Abundance. 

Together with the distribution, the estimation of the abundance of the population is important 

as a measure of population status, for the determination of the effect of stressors, the 

establishment of Protected Areas, development of management plans and evaluation of 

whether conservation measures are effective. 

There are different methods to obtain data on cetaceans for the study of abundance. Most of 

these methods are based on visual observation. Observations can be made from boat, land 

and plane (e.g. Evans and Hammond 2004). There are however several problems with visual 

observation, for example observers can see cetaceans only during the very short period when 

they are at the surface, and it is dependent on daylight hours and good weather conditions. 

These limitations are not present in acoustic monitoring that allows data collection at night 

and under bad weather conditions, but the calculation of abundance from acoustic data is 

controversial as animals can be “quiet” and thus not recorded, it is difficult to determine the 

number of individuals acoustically, and the incorrect identification of the species can be 

problematic (Oswald et al 2007, Mellinger et al 2007, Marques et al 2009, 2011, Caillat et al 

2013). 

The estimation of the abundance of a highly mobile species such as harbour porpoise (Read 

and Gaskin 1985, Westgate et al 1995), a species that also shows seasonal movements (Keiper 

et al 2005, Siebert et al 2006, Verfuß et al 2007, Scheidat et al 2008, 2011, 2012, Gilles et al 

2009, Camphuysen 2011, Haelters et al 2011, Heide-Jørgensen et la 2011,  Sveegaard et al 

2011, Geelhoed et al 2013, Benke et al 2014), must be carefully calculated to account for its 

movements between different areas.  

Various studies have been carried out to estimate the abundance of porpoises in areas of the 

North East Atlantic (Gillespie et al 2005, Berrow et la 2007, Shucksmith et al 2008, Healters and 

Camphuysen 2009, Gilles et al 2011, Haelters et al 2011, Leeney et al 2011, Scheidat et al 2012, 

Geelhoed et al 2013, Benke et a 2014). Two large-scale surveys (SCANS and SCANS II) were 

carried out during summer months, mainly in July, of 1994 and 2005 (Hammond et al 2002, 

2013). In the first survey, the porpoise population was estimated to be 341000 individuals 

(Hammond et al 2002) in the North Sea and adjacent waters and in a comparable area in 2005, 

the estimate was 324000 (Hammond et al 2013). Whereas there was no significant difference 

in abundance estimations, there was a marked difference in porpoise distribution with a shift 

from northwest to the southwest in the North Sea. This movement was also detected in other 
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more localised studies (Jauniaux et al 2002, Camphuysen 2004, Gilles et al 2009, 2011, Healters 

et al 2011, Scheidat et al 2012, see Fig. 3 from Hammond et al 2013). 

 

Figure 3. Survey blocks defined for the SCANS-II surveys modified from Hammond et al (2013). 

Block W, which comprises Southwest France, Spain and Portugal, is highlighted in red. 

Diet. 

Harbour porpoise is a fish feeder that tends to feed primarily on two to four main species in 

any one area (Santos and Pierce 2003). The most important prey types in Scottish waters were 

whiting (Merlangius merlangus) and sandeels (Ammodytidae) (Santos et al 2004). In Denmark 

the main prey were cod (Gadus morhua), viviparous blenny (Zoarcidae) and whiting. In the 

Netherlands more than 75% of the total estimated prey weight corresponded to whiting 

although gobies dominated the diet in terms of numbers eaten (88% of the total) (Santos et al 

2005). In Normandy, Gobiidae made up more than 95% of prey collected in the stomachs (De 

Pierrepont et al 2005) whereas scads (Trachurus trachurus or/and  T. mediterraneus), sardine 

(Sardina pilchardus), blue whiting and whiting were found to be the main prey along the 

Northeast Atlantic French coast (Spitz et al 2006). In Iceland (Víkingsson et al 2003), the 

predominant prey was capelin (Mallotus villosus). In Galicia studies of the stomach contents of 

stranded and by-catch porpoises identified 18 fish taxa and four cephalopod taxa. Trisopterus 
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spp were the main prey, followed by blue whiting (Micromesistius poutassou) and Trachurus 

spp (Read et al 2012, Pierce et al 2010). In Portugal the principal prey was the common 

dragonet (Callionymus lyra), followed of Trisopterus sp. and Liza sp. (Aguiar 2013). Variation in 

diet depending on the region, season and year of study, and body size, were found at Scotland 

and Portugal (Santos et al 2004, Aguiar 2013). 

Harbour porpoises are one of the smallest cetacean species and their small body size means 

that they cannot store much energy and they can only survive very short periods without 

feeding (as little as 3 days) (Kastelein et al 1997). Although the reproductive interval is 

estimated to vary from 1 to 2 years in eastern Atlantic (Lockyer 2003, Lockyer and Kinze 2003, 

Ólafsdóttir et al 2002, Read et al 2012), in the western Atlantic, mature females often are 

pregnant and lactating at the same time (Read et al 1997). Those factors together suggest that 

they are more dependent on a year-round proximity to food sources than other cetacean 

species (Brodie 1995). 

Lockyer et al (2003) found a marked variation in food intake throughout the year. Yasui and 

Gaskin (1986) estimated a food daily consumption of 3.5% of total body weight, Kastelein et al 

(1997) of 4 – 9.5%, and Santos et al (2014) based on the information of Yasui and Gaskin 

(1986) and Kastelein et al (1997), of 4.44%. In the same study, the consumption of sardine by 

common, striped and bottlenose dolphin and harbour porpoise in Iberian Atlantic waters was 

estimated to represent between 3% and 6% of the current estimate of natural mortality of 

sardine, the predation by bottlenose dolphin and porpoises being less than 1% of the total 

removal of sardine by these four species.  For hake, harbour porpoise predation only 

represents around 1% of total amount of hake consumption by cetaceans. 

New techniques have been developed to study the diet and foraging habits. These techniques 

include the study of stable isotopes (such as nitrogen δ15N and δ13C carbon) and Cd. Mean 

values of δ13C in Black sea porpoises were found to be different between males and females, 

suggesting a trophic segregation between sexes, with females having a more coastal 

distribution, and hepatic Hg was found to be correlated with δ13C reflecting the difference 

between coastal and offshore feeding habitats (Das et al 2004 a). Sexual segregation in diet 

was also found for Dutch (Das et al 2003, Jansen et al 2012, Christensen and Richardson 2008) 

and French and Belgian porpoises (Das et al 2003). In Scandinavian waters, only Cd, among the 

trace elements analysed, was found to be useful as ecological tracer for food origin (Fontaine 

et al 2007 b). Measures of this trace element suggest that porpoises in northern waters include 
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more oceanic cephalopods in their diet, and together with δ13C and δ15N show a shift in 

harbour porpoise feeding habits from pelagic prey species in deep northern waters to more 

coastal and/or demersal prey in the relatively shallow North Sea and Skagerrak waters. Studies 

focusing on harbour porpoises and bottlenose dolphins (Tursiops truncatus) found a partial 

dietary overlap of their foraging niche in the Bay of Biscay (Spitz et al 2006), suggesting a 

potential competition for limited resources. Méndez-Fernandez et al (2013) analysed stable 

isotopes (δ15N and δ13C) and Cd as ecological tracers to study the niche segregation of the 5 

main species at the Iberian Peninsula (common dolphin (Delphinus delphis), bottlenose 

dolphin, harbour porpoise, striped dolphin (Stenella coeruleoalba) and long-finned pilot whale 

(Globicephala melas)) and found that porpoises have a coastal foraging niche with the highest 

trophic position among the studied species.  Bottlenose dolphins have a similar foraging niche 

to porpoises, but with a lower trophic position, which suggest that they have different prey 

and/or the use of offshore areas.  

Life history.  

Longevity in harbour porpoises is up to 23 years in both sexes, but less than 5% of the 

individuals live more than 12 years (Lockyer 1995, 2003, Lockyer and Kinze 2003, Learmonth et 

al

For harbour porpoises the sex ratio does not change significantly between age classes, with a 

slightly larger proportion of males seen than females (Lockyer 2003, Lockyer and Kinze 2003, 

López 2003, Ólafsdóttir et al 2002, Read et al 2012). Harbour porpoise females show larger 

sizes than males (Gaskin 1984, Read 1999). In the North Atlantic, lengths in females vary 

between 153.4 and 163 cm, and males between 141.1 and 148.8 cm, although their body size 

varies with geographic location, the West Greenland porpoises being the smallest and the 

Iberian porpoises the largest (Table 1; Sequeira 1996, Lens 1997, López 2003, Lockyer et al 

2003, Read et al 2012, Learmonth et al 2014). Mean body weight for females is between 34 - 

47 kg, and 27 - 35 kg for males, with females being heavier than males, with some females 

attain weights of up to 89 kg (Lockyer and Kinze 2003) and 79.5 kg for males (Lockyer 1995, 

Lockyer and Kinze 2003). 

Its sexual maturity is estimated to occur at between 3 and 4 years old in both sexes, and at 

about 135 cm length in males, and at 140 cm in females, although there is some regional 

variation (Sorensen and Kinze 1994, Lockyer 2003, Lockyer and Kinze 2003, López 2003, 

Ólafsdóttir et al 2003, Read et al 2012, Learmonth et al 2014). 
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The reproductive interval is estimated to vary from 1 to 2 years (Lockyer 2003, Lockyer and 

Kinze 2003, Ólafsdóttir et al 2002, Read et al 2012). In Scotland, there were lower estimates of 

reproductive rate in porpoises and mature females may become pregnant only once every 2.5 

– 3 years, although this result could be underestimated because the study was based on 

stranded animals, among which there were relatively few mature females and  of the mature 

females most of them were with poor health (Learmonth et al 2014). The gestation period is 

estimated to be of around 10 – 11 months (Sorensen and Kinze 1994, Learmonth et al 2014). 

Reproduction is very seasonal in all populations of harbour porpoises, with parturition 

occurring in North Atlantic mainly between June and July, although in Scottish waters it is 

estimated to be between April and July, and in Iberian Atlantic waters it seems that this period 

is not so defined with a first peak in spring and a second one in summer (Barreiro et al 1994, 

Sorensen and Kinze 1994, Lockyer 1995, 2003, Sequeira 1996, Read 1999, López 2003, López et 

al 2012, Silva et al 1999, Learmonth et al 2014). At birth they are between 60 and 75 cm of 

length and 3.4 – 6.7 kg of weight (Lockyer and Kinze 2003) and lactation is probably at least 8 

months (Lockyer 2003).  

Population structure. 

In the Northeast Atlantic and adjacent seas, genetic studies using several markers (e.g. 

allozymes, RFLP of mitochondrial DNA, mitochondrial DNA sequencing, microsatellites or a 

combination of markers), distinguish three different populations: 1) Northeast Atlantic from 

France to Norway (including the Baltic porpoises) as a “continuous” population with significant 

isolation by distance (Fontaine et al 2007) without a clear population structure, 2) Iberian 

Peninsula and West Africa, 3) Black Sea (e.g. Andersen et al 2001, Tolley and Rosel 2006, 

Fontaine et al 2007 a, Wiemann et al 2010, Alfonsi et al 2012). In relation to conservation 

efforts under the MSFD, these areas were divided in five management units: Celtic and Irish 

Seas, Iberian Peninsula, West Scotland and Northern Ireland, North Sea and Kattegat and Belt 

Seas (ICES 2013, Fig. 4). Strong barriers to gene flow split this population from the Iberian and 

West Africa population, with a restricted admixture zone in the Bay of Biscay (Fontaine et al 

2007 a, 2014, Alfonsi et al 2012). 
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Figure 4. Map showing recommended management units for harbour porpoise proposed for 

MSFD (WGMME 2013). 

The animals from Spain and Portugal are a genetically homogeneous group with a gene flow 

from Iberia to West Africa (Tolley and Rosel 2006, Viaud-Martinez et al 2007, Fontaine et al 

2012). 

Finally, porpoises from the Black Sea underwent historical isolation because of environmental 

changes in the Mediterranean Sea (Tolley and Rosel 2006, Fontaine et al 2010), where 

nowadays the species seems to be absent (Frantzis et al 2001), leading to a genetic isolation 

confirmed by several studies (e.g. Rosel et al 1995, 2003, Andersen et al 2001, Tolley and Rosel 

2006, Fontaine et al 2007 a, 2010, Wiemann et al 2010). Within this area, no significant 

differences were detected between porpoises from the Aegean and Black Sea (Fontaine et al 

2012), which suggests that Aegean porpoises come from Black Sea rather than from the 

Atlantic population (Rosel et al 2003, Tonay et al 2012). 
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Together with morphological data (Sequeira 1996, López et al 2003, Rosel et al 2003, Gol’din 

2004, Viaud-Martinez et al 2007, Galatius and Gol’din 2011, Read et al 2012), genetic data 

contribute to the description of three subspecies: P.p. phocoena in the North Atlantic, P.p. 

meridionalis in Iberia and West Africa and P.p. relicta in the Black Sea (Gaskin 1984, Rosel et al 

1995, Fontaine et al 2014) and the definition of 5 management units in European Northeast 

Atlantic (ICES 2014). 

Threats. 

The Marine Strategy Framework Directive (Directive 2008/56/EC) mentioned five different 

reasons why European Seas were not considered to be at "good environmental status": 

1. Marine ecosystems face increasing pressure from human activities both on land and at 

sea, as 41% of the European population live in coastal regions and economic activities 

depending on the marine environment are growing. 

2. 39% of (fish) stocks in the Northeast Atlantic and 88% in the Mediterranean and Black 

Seas are still overfished and the situation is improving only slowly. 

3. Pollution in the marine environment has decreased in some places but levels of 

nutrients and certain hazardous substances are overall still above acceptable limits. 

Oxygen depletion, as a result of nutrient pollution, is particularly serious in the Baltic 

and Black Seas.  

4. Marine litter, mostly plastic, is a growing issue globally and in the EU. In the North Sea, 

over 90% of fulmars have plastic in their stomach and on average 712 items of litter 

are found per 100 m stretch of beach on the Atlantic Coast. The impacts of this 

increasing problem are manifold and their magnitude not yet fully known.  

5. Climate change, though not directly assessed under the MSFD, also contributes to the 

further degradation of marine ecosystems. 

All these issues are relevant to cetaceans such as porpoises but the second one (fishing 

pressure) probably represents the most serious threat to porpoises, due to high levels of 

fishery bycatch mortality of porpoises in certain fisheries. 

By-catch. 

By-catch is one of the principal threats for small cetaceans, especially harbour porpoises (IWC 

1994), being the most frequent known causes of death of North Sea porpoises together with 
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acute bronchopneumonia (Baker and Martin 1992, Kuiken et al 1994, Kirkwood et al 1997). In 

the UK, by-catch was the cause of death 34% of the stranded porpoises that were examined 

(Jepson et al 2000), in Germany 46% (Siebert et al 2001), in North West Spain 49.4% (López et 

al 2012) and in Portugal around 58% of the porpoises (Ferreira 2007). The precise nature of the 

interaction varies between areas, fishing gear type, cetacean species, cultures, and any 

combination of these (IWC 1994). ASCOBANS has advised that bycatches should not exceed 

1.7% of the best population estimate. By-catch can be estimated from: i) the number of by-

caught animals recorded by observers on board in a representative sub-sample of a fishery, ii) 

stranding, iii) interviews with fishermen, and, iv) animals landed by fishermen. In strandings, 

bycatch can be diagnosed using signs such as net marks, which are normally confined to the 

front of the pectoral flipper, dorsal fin and fluke, or the head region, mutilations, and/or cuts 

on the ventral side (Kuiken et al 1994, Siebert et al 1999, 2006, Ferreira 2007). Porpoises are 

taken incidentally in several different gear types (driftnets, trammel, trawl nets, etc), but 

mostly in bottom-set gillnets (Read 1999). 

There are several methods to mitigate marine mammal bycatches (Bjørge et al 2012, 

Ophranides and Palka 2013, Read 2013) including:  

i) acoustic alarm devices (pingers). Eleven EU Member Countries are affected by the 

monitoring and mitigation requirements of Council Regulation (EC) No.812/2004, 

although not all are carrying out any action. For example, “Pingers” were used in 

Sweden, Denmark, Germany, Ireland, Latvia, Poland, and the United Kingdom but 

overall effectiveness of the mitigation could not be evaluated because of the lack of 

data (and because the EU does not require monitoring of the effectiveness of those 

measures) (ICES 2014). Pingers have proven efficient in several experiments (e.g. Palka 

et al 2008, Gazo et al 2008, Carlström et al 2009, Gönener and Bilgin 2009, Northridge 

et al 2011, Ophranides and Palka 2013, Dawson et al 2013). However, there are still 

concerns about their practicality and effectiveness over the long term, and their 

negative impacts from the noise they emit (Cox et al 2001, Claström et al 2002, 2009, 

Cox and Read 2004, Gazo et al 2008, Kyhn et al 2015). 

ii) time/area fishery closures or avoidance of fishing areas where cetaceans are present 

(e.g. Murray et al 2000). This has its limitations as there will almost certainly be an 

overlap between cetacean feeding areas and preferred fishing grounds (Goetz et al 

2014). 
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iii) technological modifications to the fishing gear such as barium sulphate-enhanced or 

gillnets, iron-oxide gillnets (e.g. Mooney et al 2007, Trippel et al 2003, 2008, Larsen et 

al 2007). This method could be less efficient than acoustic alarms in controlled tests, 

but they are silent, do not require an external power source and are otherwise 

operationally identical to standard nylon gillnets (Trippel et al 2008). 

Despite some progress in reducing bycatch mortality due to use of pingers on gill nets, bycatch 

is still considered a major threat to porpoises in European seas (ICES 2015). 

Contaminants. 

The OSPAR list of Chemicals for Priority Action (OSPAR 2010) cited the persistent organic 

pollutants (POPs) as one of the primary pollutants of concern in marine ecosystems, including 

(PCBs) and pesticides (e.g. DDT). Although their production has been banned since the end of 

the 1970s, high PCB concentrations are still found in wildlife and other environmental 

components (OSPAR 2010), such as porpoises in UK waters (Law et al 2012). Other classes of 

organic chemicals are also of concern nowadays, notably the brominated diphenyl ether 

formulations (PBDEs) (de Boer et al 1998) and the hexabromocyclododecanes (HBCDs) another 

brominated flame retardant (e.g. Zegers et al 2005, Law et al 2012). While PBDE 

concentrations are declining in the UK (Law et al 2010, 2012), and for both PCB and PBDEs in 

the North Sea, except for calves, (Weijs et al 2010), in UK HBCD levels experienced an increase 

between 2000 and 2001, but then showed a significant fall in concentrations after 2003 (Law 

et al 2012), and a decreasing trend in the North Sea from 1990 until 2008 (Weijs et al 2010).  

The threshold level above which there are health effects in mammals (Kannan et al 2000) for 

PCBs was found to be frequently exceeded in porpoises from North Sea (74% of individuals), 

Ireland (25%) (Pierce et al 2008) and Iberia (75%) (Méndez-Fernandez et al 2014 a). In the UK 

porpoises which died due to infectious disease were found to have concentrations of PCBs 

higher than the porpoises that died of physical trauma (Jepson et al 2005, Law et al 2012), 

often also exceeding that threshold. Murphy et al (2010) also found that high PCB burdens 

tended to be associated with the reduction of reproductive success in females and lower 

survival of their first offspring during early lactation (see also Murphy et al 2015).  

Many trace elements occurring in the marine environment are potentially toxic, even at low 

concentrations (Chappuis 1991). These elements are derived from both natural and 

anthropogenic (e.g. mining and industrial discharges) sources and can be divided into non-
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essential elements (Cd, Pb, Hg and Ag) that are toxic elements for which no biological function 

has been demonstrated so far, and essential elements (Fe, Cu, Co, Zn, Se and Cr) with a 

biological function and whose deficiency induces pathology in humans and more generally in 

mammals (Chappuis 1991, Underwood 1977). Marine mammals, as long-lived apex predators, 

are potentially threatened by non-essential trace elements, since most are bioaccumulated 

and biomagnified through food webs (Law 1996, Das et al 2003), although Caurant et al (2006) 

did not find an apparent influence of habitat on bioaccumulation for Pb in harbour porpoises 

from Bay of Biscay. Heavy metal concentrations in marine mammals depend not only on 

environmental contamination, but also on several biological and ecological factors such as age, 

body condition, diet and the capacity to excrete these elements (Caurant et al 1994, Law 1996, 

Aguilar et al 1999, Bennett et al 2001, Das et al 2003, 2004 b, Pierce et al 2008, Méndez-

Fernández et al 2014 a, b). 

The toxic effects of many trace elements remain unclear (Law 1996), but comparing porpoises 

that died as a consequence of physical trauma (most frequently entrapment in fishing gear), 

and porpoises died due to infectious diseases caused by parasitic, bacterial, fungal and viral 

pathogens, mean liver concentrations of Hg, selenium (Se), the Hg:Se molar ratio, and zinc (Zn) 

were significantly higher in the porpoises of the second group than of the first one (Bennett et 

al 2001). A similar finding was reported by Siebert et al (1999) who report an association 

between both liver Hg and MeHg (monomethylmercury) concentrations with the severity of 

disease in harbour porpoises found in the German waters of the North and Baltic Seas. Das et 

al (2004 b) explains that although facing limited toxicological risk when in normal healthy 

condition, with deteriorating body condition, the porpoises could well be adversely affected by 

Zn and Hg. 

Climate change.  

Climate change is another threat that must be kept in mind as it seems to affect the 

composition and structure of ecological communities: if local conditions change, new species 

may join communities while others may disappear from them or change in their relative and 

absolute abundances (Genner et al 2004, Learmonth et al 2006, MacLeod et al 2005, 2009, 

Lambert et al 2014). Water temperatures have already increased due to the effects of global 

climate change and are predicted to continue increasing throughout much of the world’s 

oceans (Levitus et al 2000, Barnett et al 2001, Learmonth et al 2006, Cubasch et al 2013).  
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For cetaceans ecological niches seem to be primarily defined by water temperature, water 

depth, factors that affect the distribution and abundance of their prey, so that increased 

temperatures are expected to have negative consequences for the conservation status of 

individual species (Learmonth et al 2006, MacLeod et al 2009, Lambert et al 2011, 2014). While 

warmer water species may benefit through an expanded range as temperatures increase, the 

opposite will happen for colder water species resulting in a reduction in the total area where 

they occur; and finally, any changes that occur in community structure may affect the ability of 

a conservation strategy based on the previous population structure (MacLeod et al 2005, 

Robinson et al 2009, Lambert et al 2011). Indeed, some populations may become locally 

extinct in those areas of conservation. 

The distribution of several cetacean species has already changed possibly due to climate 

change, among other causes (e.g. MacLeod et al 2005, 2009,  Heide-Jørgensen et al 2002, 

2011, Newson et al 2009, Laidre et al 2008, Schumann et al 2013, Lambert et al 2011, 2014, 

Víkingsson et al 2014). In the harbour porpoise climate change may result in potentially 

harmful changes in distribution, abundance and migration, diet, body condition, increases in 

the susceptibility to disease and contaminants, and reductions of the reproductive success 

(Learmonth et al 2006, MacLeod et al 2009, Heide-Jørgensen et al 2011, Schumann et al 2013).  

Noise pollution. 

Noise levels in the oceans have increased considerably since engine-powered shipping was 

introduced in the late 18th century. Also the use of military sonar in naval exercises apparently 

caused mass strandings of beaked whales (Simmonds and Lopez-Jurado 1991, Frantzis 1998, 

Balcomb and Claridge 2001, Jepson et al 2003, 2005, Fernández et al 2005, 2012, Cox et al 

2006). Evidence of acute and chronic tissue damage in stranded cetaceans that results from 

the formation in vivo of gas bubbles were found in the whales stranded in Canary Islands in 

2002 (Jepson et al 2003, Fernández et al 2005), it has been detected also in other species such 

as Risso’s dolphins (Grampus griseus), common dolphins (Delphinus delphis) and also harbour 

porpoises (Phocoena phocoena). Therefore, the use of active sonar may affect harbour 

porpoise adversely as well (Jepson et al 2005) 

Recently other sources of anthropogenic noise have been added in the ocean, such as offshore 

wind farms (Tougaard et al 2009), and seismic surveys. 

The growth of offshore wind farms has raised concerns about their impact on the marine 
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environment. Marine mammals use sound for foraging, orientation and communication and 

are therefore possibly susceptible to negative effects of man-made noise generated from 

constructing and operating large offshore wind turbines (Madsen et al 2006). If something is 

keeping a porpoise away from a particular area it may cause a decrease in the amount of 

food that is accessible to the porpoise, or alternatively it may result in the creation of a 

barrier between different areas that are essential to the animal at different times (Nabe-

Nielsen et al 2011). 

It has been shown that the harbour porpoise may react to the construction and operation of 

offshore wind farms in three ways: 

i) positively: although the reasons are not clear, it could be an increased food 

availability inside the wind farm (reef effect), the absence of vessels in an otherwise 

heavily used part of the sea (sheltering effect), and/or a possible reduction in the 

fishing intensity in wind farm areas (Nabe-Nielsen et al 2011, Scheidat et al 2011); 

ii) negatively: avoiding the area, changing movements, population dynamics or 

behaviour (Carstensen et al 2006, Gilles et al 2009, Thompson et al. 2010, Teilmann 

and Carstensen 2012, Dähne et al 2013, Nabe-Nielsen et al 2014); 

iii) absence of an obvious behavioural reaction (Tougaard et al 2009, Nabe-Nielsen et al 

2011). 

If a development of a marine renewable energy is placed in, or adjacent to, sensitive areas for 

cetaceans, such as those used for breeding, nursing, feeding or migration, the impacts are 

likely to be greater than other impacts located away from these critical areas (James 2013). 

Brandt et al (2011) recommend the need for mitigation measures such as the use of bubble 

curtains and scaring devices to prevent individuals from the risk of injury from pile driving 

operations. However, they may reduce the risk of exposing nearby animals to damaging sound 

pressure levels, but will not change the fact that animals in a large area are likely to be 

affected behaviourally (Madsen et al 2006). 

Noise can cause hearing loss which can either be temporary (TTS or temporary threshold shift) 

or permanent (PTS or permanent threshold shift). Also, animals can suffer masking effects 

(interfering or obscuring effects of noise, which limits animals from hearing signals important 

to them and is especially important in mysticetes that are thought to communicate over large 

distances of ocean or in odontodetes interfering with short-range communication and prey 
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finding), or fatal effects (strandings and finally, death) (e.g. Nowacek et al 2007, Weilgart 

2007). 

High intensity military sonar was demonstrated to have a direct relationship with atypical mass 

strandings of beaked whales (Frantzis 1998, Jepson et al 2003, Fernández et al 2005, 2012, 

Arbelo et al 2013). Those animals had chronic and acute damage in their tissues due to the 

formation of air bubbles such as those caused in decompression sickness (Jepson et al 2003, 

Fernandez et al 2005, 2012). However, other cetacean species may also be involved. Also 

seismic surveying activities may impact on different marine mammal species (Engel et al 2004, 

Gordon et al 2004). 

ASCOBANS (Agreement on the Conservation of Small Cetaceans in the Baltic, North East 

Atlantic, Irish and North Seas) suggest that a reduction of disturbance might be achieved by 

continuing to collect information on seismic surveys, and continuing the dialogue with the 

seismic industry and military authorities on preventing/mitigating the impact of seismic 

activities and other noise-producing tests (ASCOBANS 2000). 

Conservation measures and conservation status. 

Spain. 

The Ministerio de Medio Ambiente (Environmental Ministry of Spanish Government) Order of 

May 10th 2000 includes the harbour porpoise in the Catálogo Nacional de Especies 

Amenazadas (National List of Threatened Species), Ley 4/1989, as “vulnerable”, what requires 

the elaboration of Special Management Plans for Conservation (last revision R.D. 139/2011, 

February 4th  2011). 

In the Decreto 88/2007, Arpil 19th, that regulates the Catálogo Gallego de Especies 

Amenazadas (Galician List of Threatened Species), DOG Nº 89, May 9th 2007., Annex II, the 

harbour porpoise is listed as “vulnerable”. The Decree establishes the actions needed to begin 

the Management Plans: the general objectives, purpose of the plan, definition of areas of 

interest, especially those principals for the conservation of the species due to their significance 

for the species to conserve, conservation measures for the species and its habitat, 

investigation, information, environmental education and social participation, validity and 

revision of the plan and additional information. 
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The Real decreto 1997/1995, December 7th, is the transposition to the Spanish legislation, of 

the Habitat Directive, which establishes the actions to guarantee the biodiversity through the 

conservation of the natural habitats and the wild fauna and flora. 

Portugal. 

The catch, transport or deliberate killing of marine mammals is forbidden by the Decreto Lei 

n.º 263/81, September 3rd. Also, marine mammals commercialization at any market, of animals 

that are either found dead in fishing gears or found stranded at the coast, is forbidden. 

In Portuguese legislation, the Habitat Directive transposition is the Decreto Lei 140/99, April 

24th, and the Decreto Lei 49/2005, February 24th. 

International. 

INTERNATIONAL UNION FOR CONSERVATION OF NATURE (IUCN) 

The European Red List is a review of the conservation status of c. 6.000 European species. The 

European Red Lists identify those species that are threatened with extinction at the European 

level, and so appropriate conservation action can be taken to improve their status. 21.7% of 

cetaceans of the EU are considered threatened and none is classified as extinct, although 44% 

of the species are not well known. Harbour porpoise is classified as “Vulnerable”. 

HABITATS DIRECTIVE (92/43/EEC) 

The Habitats Directive (together with the Birds Directive) forms the cornerstone of Europe's 

nature conservation policy. It is built around two pillars: the Natura 2000 network of protected 

sites and the strict system of species protection. The main aim of this Directive is to promote 

the maintenance of biodiversity, taking account of economic, social, cultural and regional 

requirements. It aims to ensure the conservation of a wide range of rare, threatened or 

endemic species. Some 200 rare and characteristic habitat types are also targeted for 

conservation in their own right. In this Directive, the harbour porpoise is included in Annex II, 

which requires the designation of Special Areas of Conservation, and in Annex IV, in which 

species of Community interest in need of strict protection are listed. 

 

 

http://ec.europa.eu/environment/nature/legislation/birdsdirective/index_en.htm
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MARINE STRATEGY FRAMEWORK DIRECTIVE 

The MSFD aims to achieve Good Environmental Status (GES) of the EU's marine waters by 2020 

and to protect the resource base upon which marine-related economic and social activities 

depend. The Directive enshrines in a legislative framework the ecosystem approach to the 

management of human activities having an impact on the marine environment, integrating the 

concepts of environmental protection and sustainable use.  In order to achieve GES, each 

Member State is required to develop a strategy for its marine waters (or Marine Strategy). By 

2013 Member States had reported under the Marine Strategy Framework Directive on the 

state of the environment in their marine waters, on what they consider as being a GES and on 

the objectives and targets they have set themselves to reach it by 2020 (articles 8, 9 and 10 of 

the MSFD). 

Although Portugal has reported on GES for all descriptors (eleven qualitative descriptors which 

describe what the environment will look like when GES has been achieved), its report is 

unclear with regard to the definition of GES and there are insufficient details provided so as to 

evaluate if and when GES is achieved. Marine mammals were excluded due to the “lack of 

sufficient information”, although in reality the state of knowledge of cetaceans in Portuguese 

waters is similar to that in Spain. Spain developed marine strategies for each of the 5 sub-

divisions (North Atlantic division, South Atlantic division, Estrecho and Alborán division, 

Levantino-Balear division, Macaronesia (Canary) division) and there are three framework 

documents applicable to all sub-divisions: one general, one on marine mammals and one on 

birds. 

The knowledge about distribution, abundance and population dynamics on cetaceans is 

generally considered as one of the indicators of a GES by the MSFD. Due to the growing 

anthropogenic impact on the health of marine environment and its natural resources 

(European Commission 2014), the MSFD required achieving a GES of EU’s marine waters by 

2020.  

REGULATION 812/2004. 

This regulation, which concerns the incidental catches of cetaceans in fisheries, came into 

force on 26th April 2004. This Regulation pursues a double objective. Firstly, it introduces 

technical measures concerning gill nets and trawls in specified areas. Secondly, it creates a 

monitoring system on board fishing vessels to obtain information on by-catches of cetaceans 
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in certain “at risk” fisheries. This Regulation makes the use of acoustic deterrent devices 

obligatory for all vessels of 12 metres or longer fishing in the zones, during the periods and 

using the gear listed in Annex I. However, its provisions generally exclude all small vessels, 

many fleets have no monitoring at all, and the monitoring of the efficacy of mitigation 

measures is non-existent. Added to this, several EU nations, including Spain, do not fulfil their 

obligations under this regulation. 

IINTERNATIONAL WHALING COMMISSION (IWC) 

The International Whaling Commission (IWC) is the global intergovernmental body charged 

with the conservation of whales and the management of whaling. It is set up under the 

International Convention for the Regulation of Whaling signed in 1946. In 1986 the 

Commission introduced zero catch limits for commercial whaling. This provision is still in place 

today, although the Commission continues to set catch limits for aboriginal subsistence 

whaling and for “research”. As well as keeping whale catch limits under review, the 

Commission works to promote the recovery of depleted whale populations by addressing a 

range of specific issues. These include ship strikes, entanglement events, environmental 

concerns and establishing protocols for whale watching. The Commission has agreed that the 

Scientific Committee can study and provide advice on small cetaceans and the Committee has 

established a sub-committee on small cetaceans which has operated since 1979. Each year the 

Scientific Committee, through its sub-committee on small cetaceans, identifies priority 

species/regions for review. Topics considered under such reviews include distribution, stock 

structure, abundance, seasonal movements, life history, ecology, status, potential threats and 

directed and incidental takes. 

INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA (ICES) 

ICES is an intergovernmental organization whose main objective is to increase the scientific 

knowledge of the marine environment and its living resources and to use this knowledge to 

provide advice to competent authorities. ICES Science and Advice considers both how human 

activities affect marine ecosystems and how ecosystems affect human activities. It has two 

Working Groups directly concerned with marine mammal conservation, the Bycatch Working 

Group (WGBYC) and the Marine Mammal Ecology Working Group (WGMME) and is currently 

working to develop a mechanism to include bycatch of protected species into its fishery 

advice. 
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CONVENTION ON MIGRATORY SPECIES, Bonn Convention (CMS) 

CMS aims to conserve terrestrial, aquatic and avian migratory species throughout their range. 

Harbour porpoise is included in Appendix II as a migratory species which has an unfavourable 

conservation status and which require international agreements for its conservation and 

management. This Appendix lists species which have a conservation status which would 

significantly benefit from the international cooperation that could be achieved by an 

international agreement. 

AGREEMENT ON THE CONSERVATION OF SMALL CETACEANS OF THE BALTIC, NORTH EAST 

ATLANTIC, IRISH AND NORTH SEAS (ASCOBANS) 

ASCOBANS was concluded in 1991 as the Agreement on the Conservation of Small Cetaceans 

of the Baltic and North Seas (ASCOBANS) under the auspices of the Convention on Migratory 

Species (CMS or Bonn Convention) and entered into force in 1994. In February 2008, an 

extension of the agreement area came into force which changed the name to "Agreement on 

the Conservation of Small Cetaceans of the Baltic, North East Atlantic, Irish and North Seas". 

The Parties recognizes that by-catch, habitat deterioration and disturbance may adversely 

affect the population of the small cetaceans of the Baltic and North Seas; therefore they 

undertake to cooperate closely in order to achieve and maintain a favourable conservation 

status for small cetaceans. In particular, each Party should apply, within the limits of its 

jurisdiction and in accordance with its international obligations, conservation, research and 

management measures for the conservation of small cetaceans. 

AGREEMENT ON THE CONSERVATION OF CETACEANS IN THE BLACK SEA, MEDITERRANEAN SEA 

AND CONTIGOUS ATLANTIC AREA (ACCOBAMS) 

The ACCOBAMS is a cooperative tool for the conservation of marine biodiversity in the 

Mediterranean and Black Seas. Its purpose is to reduce threats to cetaceans in Mediterranean 

and Black Sea waters and improve our knowledge of these animals. In the Mediterranean Sea 

and Contiguous Atlantic Area the harbour porpoise (Phocoena phcocoena phocoena) 

Conservation Status is classified as “Least Concern” but Phocoena phocoena relicta is 

“Endangered” in the Northern Aegean Sea, Azov Sea, Marmara Sea and Black Sea. 
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CONVENTION FOR THE PROTECTION OF THE MARINE ENVIRONMENT OF THE NORTH-EAST 

ATLANTIC (OSPAR Convention) 

The OSPAR Convention is a legal instrument guiding international cooperation between fifteen 

Governments of Europe and the European Union, on the protection of the marine 

environment of the North-East Atlantic. The new annex on biodiversity and ecosystems was 

adopted in 1998 to cover non-polluting human activities that can adversely affect the sea. 

Since the beginning OSPAR worked to identify threats to marine environment, and organised 

programmes and measures to ensure effective national action to combat them. Contracting 

Parties have to report to the OSPAR Convention what they have done to implement their 

obligations and commitments, and requires the OSPAR Commission to evaluate what has been 

achieved. 

Harbour porpoise was included on the OSPAR List of threatened and/or declining species and 

habitats by the OSPAR Agreement 2008-6. Spain and Portugal belong to the Region IV, Bay of 

Biscay and Iberian Coast, where the species was considered to be one of the most common 

cetaceans but sightings and strandings are now only common in certain areas for example, 

western Galician and northern Portuguese coasts (OSPAR 2000). OSPAR is now working on the 

implementation of the MSFD, including development of common indicators for marine 

mammals. 
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The western Iberian Peninsula.  

The West Iberian Peninsula (WIP) comprises Galicia (Northwest Spain) and Portugal. At 

Southern Galicia beaches cover 13.8% of the coast, but the Northern coastline is mostly rocky 

and shallow. The most irregular section of the WIP is Galicia, which contains many rías. The rías 

are flooded tectonic valleys of moderate depth. At mouths of the Rías Baixas (the rías of Vigo, 

Pontevedra, Arousa, Muros-Noia and Corcubión-Cee at south Galicia) there are the 

archipelagos of Cíes, Ons, and Sálvora. The rías form an intrinsic component of the “shelf 

system” (Doval et al 1998), the oceanographic characteristics of which are driven by large scale 

and local winds, especially during summer when freshwater input is at its minimum. To the 

south of Silleiro Cape, a rectilinear sandy coast extends to just north of the Nazaré Canyon, 

interrupted only by Cape Mondego. Further south, beaches are replaced by cliffs which extend 

to Cape Raso, at the latitude of Lisbon (OSPAR 2000).  

The WIP is characterized by a relative narrow shelf of 20 - 35 km wide and 100 – 200 m depth, 

with two principal currents present: i) the Portuguese Current, a broad equatorward current, 

and ii) the Navidad Current (Pingree and Le Cann 1989), a branch of the Iberian Poleward 

Current IPC that enters the Cantabrian Sea. The area is also the northern limit of the NW 

African upwelling system. Upwelling on the Galician and Portuguese shelf is seasonal, 

occurring mainly from April to September (Figueiras et al 2002, Alvarez et al 2010), although a 

shorter period seems to occur on the North coast of Iberia from June to August (Alvarez et al 

2010). Upwelling is caused by northerly winds during summer and Eckman transport (e.g. 

Fraga 1981, Figueiras et al 2002, Prego and Varela 1998). Upwelling is also associated with the 

IPC (Álvarez et al 2003), and the interaction of coastal upwelling and strong outflow from the 

rías generates eddies in the slope poleward flow, which could contribute to breakdown of the 

Iberian Polar Current (IPC) during the start of the upwelling regime (Torres and Barton 2007). 

In the North WIP, eddies are also a topographic features of the coast in areas such as the 

Estremadura Promontory, the Aveiro Canyon and the Porto Canyon (Peliz et al 2003). The rías 

form a semi-closed system because of the downwelling winds, the presence of the poleward 

flow and the upwelling that takes place inside them (Torres and Barton 2007). 
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Figure 5. The main large-scale surface currents in our study area are the Azores Current (AzC), 

the Canary Current (CaC), and the Portugal Current (PoC). The approximate location of the 

Navidad Current (NaC) is also shown. Red squares delimit source/sink areas around the 

Macaronesian islands: Azores Archipelago (AZ), Madeira Archipelago (MA), and Canary 

Archipelago (CA). The red meridional lines define coastal source/sink areas: the Iberian 

Peninsula (IP), Northwest African coast (NWA), and Strait of Gibraltar (GI). The locations of the 

Gulf of Cádiz (GoC), Cape St. Vicente (SV), and Estremadura Promontory (EP) are also noted. 

Source: Sala et al 2013. 

These oceanographic processes are important especially due to the associated enrichment of 

the waters, which favours biological production (e.g. Cabanas 1999, Âmbar 2002), and 

therefore may be good for the development and aggregation of fish and, through the food 

chain, for marine mammals and birds. Indeed, the WIP is a high biodiversity area with almost 

400 species of fish (Bañón et al 2010) and over 75 species of cephalopods (Guerra 1992). Also, 

at least 22 species of cetaceans have been recorded in Galicia (Penas-Patiño and Piñeiro-Seage 

1989, López el al 2003, Covelo et al 2009, 2015) and 16 species of cetaceans in Portugal (Brito 

et al 2009, Ferreira et al 2012), with the common dolphin (Delphinus delphis) the most 
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common species followed by bottlenose dolphin (Tursiops truncatus) (in Galicia) or harbour 

porpoise (Phocoena phocoena) (in Portugal).  

The area’s fisherys resources are used by fishermen and cetaceans and it is an area of high 

fishing effort (Sequeira et al 1992, EUROSTAT 2010), leading to a level of cetacean by-catch 

that is suspected to be unsustainably high (López et al 2012, Read et al 2012, Goetz et al 2014). 



53 
 

The Iberian harbour porpoise.  

In the 20th century the harbour porpoise was disappearing from the Spanish Mediterranean 

coasts, leading to its extinction nowadays (Gaskin 1984, Blanco and Gonzalez 1992, Frantzis et 

al 2001). In the Cantabrian Sea its regression was evident in the last decades of that century, 

although it is still present (López et al 2012). Otherwise, porpoises are common in the Galician 

and Portuguese coasts, where they are present throughout the year, and their presence is 

recorded in the Gulf of Cádiz (Consejería de Medio Ambiente y Ordenación del Territorio 

2015). 

The Iberian population of the harbour porpoise has been defined as one of the 6 management 

units in European Northeast Atlantic (ICES 2014) due to genetic and morphometric studies 

(Sequeira 1996, López et al 2003, Rosel et al 2003, Gol’din 2004, Fontaine et al 2007 a, 2010, 

2014, Viaud-Martinez et al 2007, Galatius and Gol’din 2011, Read et al 2012). Spanish and 

Portuguese porpoises are isolated with a gene flow from Iberia to West Africa (Tolley and 

Rosel 2006, Viaud-Martinez et al 2007, Fontaine et al 2012) and strong barriers to gene flow in 

the North with a restricted admixture zone in the Bay of Biscay (Fontaine et al 2007, 2014, 

Alfonsi et al 2012). 

In Galician waters, harbour porpoises are most frequently observed near to the coast (López et 

al 2004), where the continental shelf is narrower that could indicate that they occupy deeper 

waters and seem to avoid bottlenose dolphins (Pierce et al 2010). In this area, bottlenose 

dolphin attacks on porpoises have been documented (López and Rodriguez 1995, Alonso et al 

2000), although they do not appear to be frequent, it could be the reason why porpoises avoid 

areas frequented by bottlenose dolphins. In Portugal, the majority of sightings of porpoises 

were observed very near the shore. However, in some areas, the species was observed almost 

at the border of the continental shelf over deeper water depths (Santos et al 2012). 

An estimation of the abundance in the Iberian Peninsula and the Southwest France was carried 

out from the large-scale survey SCANS II (Hammond et al 2013). It was calculated that there 

was an abundance of 2357 porpoises (CV 0.92) in the area, one of the lowest densities 

estimated, together with offshore west Scotland and Ireland. Other surveys were carried out 

to study the cetaceans of the Iberian Peninsula, thus it was possible to calculate porpoise 

abundance at a different scale. Then, for Galicia and Cantabrian Sea López et al (2012) 

estimated the abundance of harbour porpoise to be 683 individuals. Furthermore, there are 

abundance estimates for Galicia: 386 porpoises (López et al 2012, 2013), and, for Portugal: 
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1691 porpoises in 2011 which increased to 3593 in 2012, suggesting strong interannual 

changes in abundance. However, changes in local abundance may simply indicate changes in 

distribution, and regular large-scale surveys unless large-scale surveys would be needed to 

determine what is happening (as seen in SCANS I and II, Hammond et al 2013). In addition, 

rapid increases and decreases in population size are unlikely in a slow breeding mammal 

unless due to immigration and/or emigration. 

Body length of the stranded porpoises in the Iberian Peninsula ranged from 81 - 202 cm (Read 

et al 2012). Females are significant bigger than males (López 2003, López et al 2012, Read et al 

2012). Animals from the Cantabrian Sea were found to be smaller than Galician porpoises, 

especially females (Lopez et al 2012). The authors suggest that this difference could be due to 

the presence of more juveniles in Cantabrian waters. Porpoises of the Iberian Peninsula are 

larger than those from other areas of their distribution (e.g. Donovan and Bjørge 1995, 

Sequeira 1996, Lens 1997, Lockyer 2003, Lopez 2003, Read et al 2012, Lopez et al 2012; Table 

1) supporting to be different from those of more northern populations in the East Atlántic. 

López (2003) estimated sexual maturity to occur at 155 cm length in males, and at 166 cm in 

female. A more recent study (Read et al 2012) estimated the length at sexual maturity for 

Iberian porpoises to be 162 cm and 185 cm for males and females respectively. Porpoises in 

the NWIP give birth every second year (Read et al 2012) the period of reproduction for the 

Iberian porpoises seems not to be much defined with a first peak in spring and a second one in 

summer (Barreiro et al 1994, Sequeira 1996, López 2003, López et al 2012, Silva et al 1999, 

Learmonth et al 2014). 
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Area 

Females 
maximum 

length 
(cm) 

Males 
maximum 

length (cm) 
Reference 

NWIP 
202        

(N=127) 
189            

(N= 136) 
Read et al 2012 

Atlantic Spain 
202                 

(N= 31) 
176             

(N= 27) 
Lens 1997 

Galicia, NW Spain 
202                

(N= 38) 
n/a López 2003 

Portugal (1981-1994) 
208               

(N= 22) 
175            

(N= 15) 
Sequeira 1996 

Scotland (0992-2004) 
173                

(N= 227) 
170            

(N= 252) 
Learmonth 2006 

British Isles (1985-1994) 
189                

(N= 96) 
163           

(N= 114) 
Lockyer 1995,      

2003 

Ireland (2001-2003) 
175                 

(N= 27) 
157            

(N= 19) 
Pierce et al 2004 

Denmark (1938-1998) 189 167 
Lockyer and Kinze  

2003 

The Netherlands 
160                 

(N= 19) 
147            

(N= 5) 
Pierce et al 2004 

France (2001-2003) 
192               

(N= 14) 
165           

(N= 17) 
Pierce et al 2004 

West Greenland (1988-89, 1995) 
166               

(N= 85) 
158           

(N= 91) 
Lockyer et al 

2003 

Iceland (1991-1997) 
174               

(N= 474) 
165           

(N= 794) 
Ölafsdótir et al 

2003 

Gulf of Maine (1989-1993) 168 157 
Read and Hohn 

1995 

Table 1. Comparison of harbour porpoise length (edited from López et al 2012). 

The main prey in the diet of porpoises in Galicia is Trisopterus spp, followed by blue whiting 

(Micromesistius poutassou) and Trachurus spp, but a total of 18 fish taxa and four cephalopod 

taxa were identified form stomach contents of stranded and by-catch porpoises (Read et al 

2012, Pierce et al 2010). In Portugal the principal prey was the common dragonet (Callionymus 

lyra), followed by Trisopterus sp. and Liza sp. (Aguiar 2013). It was found variation in diet 

depending on the region, season and year of study, and body size (Aguiar 2013) as it was found 

in Scotland (Santos et al 2004). The study of stable isotopes (δ15N and δ13C) and Cd found that 

porpoises have a coastal foraging niche with the highest trophic position among other species 

such as common dolphin, long-finned pilot whale, harbour porpoise, striped dolphin and 

bottlenose dolphin.  Bottlenose dolphins have a similar foraging niche to porpoises, but with a 
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lower trophic position, which suggest that they have different prey and/or they use of offshore 

areas (Méndez-Fernandez et al 2013).  

The principal threats for the harbour porpoise in the study area are contaminants and, of 

especial concern, bycatch. In Galicia, the 22% of the harbour porpoises stranded are by-caught 

(López et al 2002). In Portugal, the 58% of the mortality is also due to by-catch, and it is related 

with the landings of forkbeard (Phycis physis), megrim (Lepidorhombus spp.), pargo breams nei 

(Pagrus spp.), sandy ray (Leucoraja circularis), scorpionfishes (Scorpaena spp.), white sea 

bream (Diplodus sargus) and blue whiting (Micromesistus poutassou) (Ferreira 2007).  Read et 

al (2012) suggested that one of the reasons of that difference in the proportion of porpoises 

by-caught could be that gillnets are one of the gears that cause the highest rates in Galicia 

whereas in Portugal, although gillnets are also problematic, the beach-seines are commonly 

used in North-Central Portugal and are thought to be one of the gears to which harbour 

porpoises are most vulnerable (Sequeira and Inácio 1992, López and Valeiras 1997, López et al 

2003, Ferreira 2007). For both areas, those by-catch mortality rates in strandings is very high 

and could be unsustainable (Ferreira 2007, López et al 2012) according to ASCOBAMS (1997), 

which state that an anthropogenic removal of more than 1.7% of the best available population 

estimate abundance represents an ‘unacceptable interaction’.  

Méndez-Fernández et al (2014 a) found that harbour porpoise and bottlenose dolphin had the 

highest PCB concentrations among the Iberian toothed whales studied (common dolphin, long-

finned pilot whale, harbour porpoise, striped dolphin and bottlenose dolphin). They were also 

higher concentrations than seen in those species in the Atlantic, Pacific and Indian Oceans, 

with the exceptions of North, Baltic and Norwegian Seas for harbour porpoise, and they are 

much higher than the threshold level for PCB concentrations associated with adverse health 

effects on marine mammals. Comparative analyses of trace element concentrations (Hg and 

Cd) in the same five species in the Iberian Peninsula with other studies world-wide showed 

that those species in that area are not specially threatened by Hg and Cd exposure. However, 

porpoises showed slightly higher concentrations of both elements in comparison with other 

areas of the Atlantic waters but far below the suggested threshold levels of effects in humans 

and marine mammals for renal Cd and hepatic Hg (Méndez-Fernandez et al 2014 b).  

Because of the situation of the harbour porpoise in the Iberian Peninsula, it is classified as 

“vulnerable” in the Catálogo Nacional de Especies Amenazadas (National List of Threatened 

Species, Ley 4/1989, last revision R.D. 139/2011 of February 4th 2011) and in the Catálogo 

Gallego de Especies Amenazadas (Galician List of Threatened Species, DOG Nº 89, May 9th 
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2007, Annex II), which requires the elaboration of Special Management Plans for Conservation, 

and is protected by the Decreto Lei n.º 263/81, September 3rd in Portugal. Moreover, in both 

countries (Spain and Portugal) there is a transposition of the Habitat Directive of the European 

Union (Real decreto 1997/1995, December 7th; Decreto Lei 140/99, April 24th, and the Decreto 

Lei 49/2005, February 24th). 
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Thesis objectives. 

Given that the determination of population structure and habitat preferences are among the 

main research needs for the adequate management and conservation of the harbour porpoise, 

a species of concern, and given the limited available information about porpoises in the Iberian 

Peninsula, this thesis will address the following objectives: 

Objective 1. To determine the genetic population structure in harbour porpoise along the 

Northeast Atlantic and Black Sea. The spatial distribution of microsatellite and mitochondrial 

DNA variation was used to characterize levels of population genetic diversity and structure 

among putative populations from Spain (Galicia, Basque Country and Huelva), Portugal, 

France, Belgium, England, Scotland, Ireland and Turkey. 

Objective 2. To determine the existence of genetic population structure in harbour porpoise of 

Iberia, and understand with more accuracy population genetic processes occurring in the area. 

The spatial distribution of microsatellite and mitochondrial DNA variation was used to 

characterize levels of regional population genetic structure among putative populations from 

Galicia, Basque Country and Huelva and Portugal. 

Objective 3. To analyse the existence of seasonal and temporal trends in harbour porpoise 

distribution in Galicia from data recorded during targeted boat-surveys for cetacean studies 

during the years 2003-2010 carried out in Galician coastal waters. Results were compared with 

those of the other resident species present in the area, such as the bottlenose dolphin. 

Objective 4. To determine the habitat preferences and identify suitable habitats for harbour 

porpoise in Galician waters from data recorded during targeted boat-surveys for cetacean 

studies during the years 2003-2010 carried out in Galician coastal waters. This analysis was 

based on the relationship between harbour porpoise presence and seven ecogeographic 

variables known to be important in determining the distribution of cetacean species. 

Objective 5. To analyse the existence of seasonal and temporal trends in harbour porpoise 

distribution in Galicia from sightings recorded from land-surveys during the years 2003-2011 

carried out in Galician coast. Results were compared with those of the bottlenose dolphin. 

Objective 6. To determine the habitat preferences and identify suitable habitats for harbour 

porpoise in Galician waters from data recorded during land-surveys during the years 2003-

2011. This analysis was based on the relationship between harbour porpoise presence and 
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eight ecogeographic variables known to be important in determining the distribution of 

cetacean species. 

Objective 7. To detect the existence of spatiotemporal patterns and the possible presence of 

peaks (locations, years, months) in harbour porpoise strandings distribution in Galicia and 

Portugal. To determine changes in length composition and sex ratio, and proportion of 

porpoises by-caught. 

Additional objectives include the following: 

Objective 8. To assess the historical demography using mismatch distribution in the Iberian 

Peninsula, the North East Atlantic, the Baltic area, West Greenland, Iceland, Aegean and 

Marmara Sea, Black Sea and West Africa. 

Objective 9. To study the validity of the proposal of the harbour porpoise upwelling ecotype 

(Iberian and West Africa populations) as a separate subspecies, Phocoena phocoena 

meridionalis. 

Objective 10. To quantify the factors that affect the detection of harbour porpoises by 

observers in boat-surveys, such as boat speed, Beaufort and wind direction, Douglas, visibility, 

swell height, visible width and boat identity. 

Objective 11. To study the factors affecting the detection of harbour porpoises by observers at 

land-based surveys, such as number of observers, height of the observation point, optics used, 

wind strength (Beaufort scale) and direction, sea state (Douglas scale), visibility, area surveyed, 

duration of the observation and presence of bottlenose dolphins. 

Objective 12. To assess if the comparison of the distribution of harbour porpoise and 

bottlenose dolphin shows the avoidance of porpoises to bottlenose dolphins, for example in 

order to avoid aggressive interactions.  

Objective 13. To quantify the effect of several variables such as year, month, location, body 

condition, length, sex, by-catch on length composition, sex ratio and by-catch rate of stranded 

animals. 
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Thesis outline. 

This thesis consists of six main chapters, specifically written for the thesis in the format of 

scientific articles. Authorship of chapters for publication is shared with other researchers who 

have made significant contributions to the work.  All co-authors are listed at the beginning of 

the chapters concerned. 

Chapter 1 provides a general introduction to the importance of studying cetacean ecology, the 

biology of the harbour porpoises, the characterization of the study area, and the conservation 

status of harbour porpoise. 

Chapter 2 examines the population structure of harbour porpoises of Northeast Atlantic and 

Black Sea, focusing on the porpoises of the Iberian Peninsula  including samples from Spain 

(Galicia, Basque Country and Huelva) and Portugal, with the use of genetic markers 

(microsatellites and mitochondrial DNA). The genetic diversity of Iberian porpoises and genetic 

relationships between them and individuals form adjacent locations were investigated. Also 

the historical demography was studied. Moreover, the confirmation of the proposal of the 

harbour porpoise upwelling ecotype (Iberian and West Africa populations) as a separate 

subspecies, Phocoena phocoena meridionalis, was investigated. 

Chapter 3 includes the study of the spatiotemporal trends of the harbour porpoise distribution 

in Galicia from data recorded during targeted boat-based surveys, the analyse of  the factors 

that affect the detection of porpoises by observers and the identification of habitat 

preferences for this species along this area based on seven ecogeographic variables. Also the 

distribution of harbour porpoise and bottlenose dolphin was compared.  

Chapter 4 includes the study of the spatiotemporal trends of the harbour porpoise distribution 

in Galicia from data recorded during land-based surveys, the analysis of  the factors that affect 

the detection of porpoises by observers, and the identification of habitat preferences for 

porpoises along this area based on seven ecogeographic variables. Also the distribution of 

harbour porpoise and bottlenose dolphin was compared. 

Chapter 5 studies the strandings along Galician and Portuguese coasts in order to detect the 

existence of spatiotemporal patterns and the possible presence of peaks of its strandings, 

determine changes in length composition and sex ratio, and proportion of porpoises by-

caught. Additionally, the effect of year, month, location, body condition, length, sex, by-catch 

of stranded porpoises was quantified on length composition, sex ratio and by-catch rate. 
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A general discussion is provided in Chapter 6, which concludes and gives the perspective of 

this work. 
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CHAPTER II  

Population genetic structure of harbour porpoise, Phocoena 

phocoena, from the Iberian Peninsula: evidence for population 

separation from NE Atlantic Ocean and Black Sea and implications 

for management. 
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Abstract 

The effective definition of SACs for the harbour porpoise (Phocoena phocoena) requires an 

understanding of the species distribution and population structure. 

Here population structure of the harbour porpoise in the North East Atlantic and Black Sea 

was examined using ten DNA microsatellite markers and sequence variation from the 

mitochondrial control region (mcr). Focus was on samples from Spain (Galicia, Basque 

Country and Huelva) and Portugal, which were then examined with reference to populations 

in France, Belgium, England, Scotland, Ireland and Turkey. Mitochondrial DNA variation in 

Iberian samples was also examined alongside existing data from other areas such as the 

North East Atlantic, the Baltic area, West Greenland, Iceland, Aegean and Marmara Sea, and 

West Africa, in order to obtain a wide picture of the mtDNA structure.  

A Structure-based analysis of microsatellite structure identified three main genetic groups: 

the Iberian Peninsula, the rest of Northeast Atlantic, and the Black Sea. A median joining 

network of mtDNA sequences highlights the isolation of the Aegean-Marmara Sea and Black 

Sea populations.  

Neither microsatellite nor mitochondrial DNA markers detected genetic differentiation 

between Galicia and Portugal, nor any significant pattern of population genetic structure 

along the Iberian coast. However there were differences between Iberia and the rest of the 

populations studied. Values of genetic diversity for both markers were lower in the Iberian 

Peninsula than all the other populations except those in Aegean, Marmara and Black Seas, 

which increases their vulnerability.  

Levels of divergence clearly cannot be explained by isolation by distance but instead are 

likely be associated with population separation based upon oceanographic conditions due to 

the presence of upwelling conditions at West Iberia and North West Africa providing 

suitable conditions for porpoises. 

Overall the genetic data suggest that the Iberian Peninsula and West Africa should be 

considered as a separate population, which is essential to assess threats that can affect this 

population, such as by-catch in commercial fisheries. It is also the basis for the creation of 

specific management plans and the definition of SACs as required by the EU Habitats 

Directive. Furthermore, this study supports the proposal to describe this population as a 

separate subspecies, Phocoena phocoena meridionalis (Fontaine et al 2014).  
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Introduction 

To help to maintain natural habitats, populations and species as ecologically and 

evolutionarily viable entities with favourable conservation status, the European Union 

Habitats Directive mandates that Member States establish Special Areas for Conservation 

(SACs) for some species such as porpoises, and define robust species management plans 

(Council Directive 92/43/EEC). The Directive defines a “favourable" conservation status 

when: i) population dynamic data on the species concerned indicate that it is maintaining 

itself on a long-term basis as a viable component of its natural habitat; ii) the natural range 

of the species is neither being reduced nor is likely to be reduced for the foreseeable future; 

and iii) there is, and will probably continue to be, a sufficiently large habitat to maintain its 

populations on a long-term basis.  

The effective definition of SACs and development of management plans as conservation 

tools require an understanding of the distribution, abundance and population structure of a 

species. This can be informed by a sound understanding of the spatial distribution of genetic 

diversity, measured through variation in allele frequencies, heterozygosity (reflecting the 

proportion of heterozygotes within a population), and the number of alleles per locus 

(representing the diversity of alleles at each locus within a population) (Lande 1988, Reed 

and Frankham 2003, Schwartz et al 2007). For example, if a species, which is observed in a 

certain geographical area, is mistakenly assumed to form a discrete population, the effect of 

a studied threat in that area will be over-estimated. Conversely, if a discrete population in a 

certain area is not recognized the effect will be underestimated (Walton 1997). This is 

especially important with threatened populations and particularly those which exist in 

degraded or fragmented habitats (Simberloff 1988, Taylor and Dizon 1999, Hanski and 

Gaggiotti 2004, Kraaijeveld-Smith et al 2005, Höglund 2009).  When small populations 

become fragmented and migration between subpopulations decreases or is eliminated, the 

rate of loss of genetic diversity can increase through inbreeding and strong genetic drift, the 

probability of demographic, environmental and genetic stochasticity. This can negatively 

affect the long-term viability of population fragments and therefore of the entire 

population. Frankham et al (2002), Frankham (2005) and Garner et al (2005) found that 

endangered species have lower genetic diversity than non-endangered equivalents, which 

increases their vulnerability and consequently increases probability of extinction (Mills and 

Smouse 1994, Lacy 1997, Frankham et al 2002, Frankham 2005). In contrast, populations 

with frequent dispersal and gene flow can deal those stochastic/ecological effects and 
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decrease extinction risk (Lande 1998, Tallmon et al 2004, Pérez et al 2009). As such, assays 

of the levels of genetic diversity within properly defined population boundaries in natural 

populations can inform on the risk of population extinction, gauge longer term population 

viability and measure the success of conservation efforts.  

Neutral genetic markers such as microsatellite DNA length polymorphisms and mitochondrial 

DNA sequence variants have been extremely effective in determining population structure and 

identifying populations with reduced diversity (Brunner et al 1998, Hoelzel et al 2002, Johnson 

et al 2003, Epps et al 2005). The spatial distribution of diversity at these markers is affected 

only by gene flow and drift, so they in essence measure dispersal or conversely population 

isolation. They have been used for conservation purposes both in terrestrial species such as 

the red grouse (Lagopus lagopus scoticus; e.g. Piertney et al 1998, 2000), the European red-

billed chough (Pyrrhocorax pyrrhocorax; e.g. Wenzel et al 2012), the European brown bear 

(Ursus arctos; e.g. Swenson et al 2011, Kocijan et al 2011, FAPAS 2013) and the Iberian lynx 

(Lynx pardinus; e.g. Delibes et al 2000, Johnson et al 2004); and marine species such as the 

seahorse (e.g. Teske et al 2003, Thangaraj et al 2012, Nickel and Cursons 2012), the abyssal 

grenadier (Coryphaenoides armatus; Ritchie et al 2013), the bluefin tuna (Thunnus thynnus; 

Carlsson et al 2004, Ferrara et al 2010, Riccioni et al 2010, 2013, Cannas et al 2012), and the 

common guillemot (Uria aalge; e.g. Riffault et al 2005, Morris-Pocock et al 2008). Moreover, 

microsatellites represent a useful proxy for overall genomic diversity given that heterozygosity 

of neutral markers is expected to be positively correlated with that of loci under selection 

(Hansson and Westerberg 2002, Reed and Frankham 2003) and as such reductions in 

microsatellite diversity can identify genetically eroded populations. 

Mitochondrial DNA (mtDNA) can provide insight into contemporary ecological processes acting 

on a population, such as sex-biased dispersal through the spatial distribution of haplotypes in a 

landscape, but can also provide a historical perspective in a phylogeographic context. Thus, 

differences in haplotype frequencies may be reflective of more contemporary population 

structure, while phylogeographic structure will often reflect historical patterns in population 

structure (Moritz 1994) associated with historic geological events such as tectonic movement 

of landmasses, floods or glaciation (Taberlet et al 1998, Hewitt 2000). The use of both 

mitochondrial and microsatellite markers in concert provides a recent and an historic 

perspective on the processes influencing genetic structure and diversity. 

The harbour porpoise (Phocoena phocoena) is a small cetacean present in the North Atlantic, 

North Pacific, and the Black Sea (Gaskin 1984). It is primarily restricted to coastal and 
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continental shelf waters but is occasionally observed in the deep oceanic waters between 

major land masses (Donovan and Bjørge 1995, Read and Westgate 1997, NAMMCO 1998, 

Teilmann and Dietz 1998, Skove et al 2003, Sveegaard et al 2015). It is included in Annex-II of 

the EU Habitats Directive and as such, the designation of SACs is a priority issue. The IWC 

(International Whaling Commission) and ICES (International Council for the Exploration of the 

Sea) recommended studies to determine the broad scale population structure of porpoises to 

develop an appropriate management plan, in order to reduce negative impacts on the 

populations. Despite being the most common cetacean species in the North Atlantic 

(Hammond et al 2002, 2013), it is very sensitive to anthropogenic disturbance and several 

important threats have been described for the species, such as  pollutants (e.g. Bennet et al 

2001, Das et al 2004 b, Mahfouz et al 2014 a, b), climate change (e.g. Learmonth et al 2006, 

MacLeod 2009, Heide-Jørgensen et al 2011), prey abundance (e.g. MacLeod et al 2007), noise 

(e.g. Madsen et al 2006, Tougaard et al 2009, Teilmann and Castensen 2012) and fishery by-

catch (e.g. IWC 1994, Donovan and Bjørge 1995, ASCOBANS 2000). By-catch is especially 

important given that, in many areas, the incidental by-catch estimates exceed the limit of 

mortality considered as acceptable by ASCOBANS (1997), namely 1.7% of the population 

annually (e.g. Ferreira 2007, Bjørge et al 2012, López et al 2012, Goetz et al 2014, ICES 2014). 

The distribution of porpoises in the eastern Atlantic is essentially continuous, although genetic 

differentiation between individuals has been observed to increase with geographic distance 

(Fontaine et al 2007, Tolley and Rosel 2006). Although the reasons are not well understood, 

there is an obvious and ongoing return of harbour porpoises along Dutch (Camphuysen 2004), 

German (Thompsen et al 2006, Siebert et al 2006), Southwest British (Pikesley et al 2011), 

Belgian (Jauniaux et al 2002) and French coasts (Jauniaux et al 2002, Jung et al 2009) where in 

the near past they have been reduced or disappeared. Moreover, marked differences in the 

distribution between 1994 and 2005 were reported, with centres of higher densities in 

northern areas of the North Sea in 1994 having shifted southwards by 2005 (Hammond et al 

2013). 

Porpoise have been absent from the Mediterranean for the past few centuries, if not the last 

few millennia (Frantzis et al 2001, Fontaine et al 2010). Some recent observations of 

individuals have been made in the northern Aegean (Frantzis et al 2001), but these appear to 

be Black Sea individuals that have entered the region (Rosel et al 2003). 

Habitat discontinuities, changes in oceanographic features, prey distribution and philopatric 

behaviour have been identified as influencing the spatial genetic structure of several delphinid 
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species (e.g. Hoelzel et al 1998, Fullard et al 2000, Natoli et al 2005, Bilgmann et al 2007, 2008, 

Möller et al 2007, 2011, Rosel et al 2009, Mendez et al 2010, 2011, Amaral et al 2012 a, b, 

Ansmann et al 2012, Gaspari et al 2013, Richards et al 2013). It is considered that there are 

three processes that have influenced the distribution of genetic diversity across extant 

porpoise populations in North East Atlantic. 1) Historical isolation, such as is seen with the 

Black Sea, that may have taken place when the Mediterranean Sea became warm and 

oligotrophic after the Last Glacial Maximum, causing the fragmentation and retreating of the 

species in that region (Tolley and Rosel 2006, Fontaine et al 2010); 2) environmental conditions 

such as upwelling that affect water temperature and increase the productivity of an area (e.g. 

Fraga 1981, Figueiras et al 2002). Such effects are considered to influence porpoise abundance 

and distribution around Iberia and North West Africa (Fontaine et al 2007, 2014, Alfonsi et al 

2012, Chapters III and IV); and 3) shifts in distribution and movement and isolation of 

populations on the continental shelf due to philopatry, foraging specialization or seasonal 

migration (Tiedemann et al 1996, Andersen et al 1997, 2001, Walton 1997, Rosel et al 1999 a, 

Fontaine et al 2007, Wiemann et al 2010, Alfonsi et al 2012, de Luna et al 2012). 

The genetic population structure of harbour porpoises in the North Atlantic has been studied 

previously using allozyme electrophoresis (Andersen 1993), microsatellites DNA (Andersen et 

al 1997, Andersen et al 2001, De Luna et al 2012, Fontaine et al 2007, 2010); RFLP analysis of 

mitochondrial DNA (Wang et al 1996, Wang and Berggren 1997); mitochondrial DNA 

sequencing (Rosel et al 1995, 1999 a, 2003, Tiedemann et al 1996, Tolley et al 1999, 2001, 

Walton 1997, Tolley and Rosel 2006, Viaud-Martinez et al 2007, Tonay et al 2012); or a 

combination of markers (Rosel et al 1999 b, Wiemann et al 2010, Alfonsi et al 2012, Fontaine 

et al 2014). These studies have together confirmed the genetic isolation of the Black Sea 

population and the absence of a clear population structure across the European continental 

shelf, considering structuring to be weak from the northern Bay of Biscay to Norway and 

Iceland (Andersen et al 2001, Tolley and Rosel 2006, Fontaine et al 2007, Wiemann et al 2010, 

Alfonsi et al 2012). 

Several of these studies have included samples from the Iberian Peninsula. Tolley and Rosel 

(2006) analysed samples from Portugal and suggested that there is limited gene flow between 

Europe and West Africa, thus the latter should be considered a separate population. They also 

found that porpoises from the Black Sea were divergent to those from West Africa and 

Portugal, which was corroborated by Viaud-Martinez et al (2007), who analysed samples from 

the area of Gibraltar and found that they were more closed related with French porpoises than 
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with Black Sea animals, but highlighted the need for more samples from Portugal and 

Mauritania to assess if Gibraltar porpoises were part of the African population. 

Fontaine et al (2007) found that porpoises from Spain and Portugal were a genetically 

homogeneous group that had much lower genetic diversity than that observed in the North 

Atlantic but similar to genetic diversity in the Black Sea.  Strong barriers to gene flow in the 

southern Bay of Biscay were detected, which isolated, at a relatively small scale, porpoises 

from Iberian waters. This isolation was estimated to occur only approximately 300 years ago 

with a predominant northward migration, contemporaneous with the warming trend 

underway since the ‘Little Ice Age’ period, and with the ongoing retreat of cold-water fishes 

from the Bay of Biscay (Fontaine et al 2010). 

More recently, Fontaine et al (2014) defined three ecotypes of harbour porpoises as a 

consequence of a divergence event during the Last Glacial Maximum: Black Sea, upwelling 

(Iberia and Mauritania) and European continental shelf waters ecotypes (from northern Bay of 

Biscay to Norway).  Their analyses also suggest that Iberian and Mauritanian porpoises are 

likely descended from the extinct populations that once inhabited the Mediterranean during 

the glacial and post-glacial period.  

There has been asymmetrical gene flow detected between Iberia to France, and therefore 

these two previously separated populations of harbour porpoises are now admixing (Alfonsi et 

al 2012, Fontiane et al 2014). Moreover, some gene flow from Iberia to Mauritania was 

detected but not in the reverse direction (Fontaine et al 2014); therefore the Iberian 

population could be acting as a source population. 

These studies have the limitation of small sample sizes for Iberian populations and thus they 

may not represent the definitive pattern of genetic structure in this region. This study focuses 

on Iberian porpoises and uses a larger number of samples to provide a higher resolution and 

understand with more accuracy population genetic processes occurring in the area. Using a 

large-scale analysis of genetic, phylogeographic structure and diversity it will be possible to 

robustly describe the relationship between Iberian porpoises and those from North East 

Atlantic and Black sea, as well as characterise any substructure or philopatry along the Iberian 

coast to confirm the existence of a putative upwelling ecotype. 

All this information will help to increase the knowledge about harbour porpoises of Iberian 

waters and to correctly interpret the information from other studies using non-molecular 
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approaches (e.g. sightings, strandings, acoustics), to assess the threats that affect the 

population, and establish SACs and management strategies to maintain long-term viability of 

this population as is required by the EU Habitats Directive. 
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Materials and methods 

Sample collection. 

Skin, muscle and/or kidney samples were obtained from a total of 336 stranded and by-caught 

harbour porpoises from eight geographical locations: Spain (SP, N=65), Portugal (PT, N=124), 

France (FRA, N=24), Belgium (BEL, N=34), England (ENG, N=24), Scotland (SCO, N=25), Ireland 

(IRE, N=24) and Turkey (TUR, N=16). Samples from Spain can be regionally separated into the 

Basque Country (BCO, N=2), Galicia (GAL, N=61) and Huelva (HUEL, N=2). Samples were 

preserved in 96% ethanol with subsequent storage at ambient temperature; or 20% dimethyl 

sulfoxide (DMSO) solution saturated in NaCl with storage at -20°C; or frozen at -20°C. 

DNA was extracted using the DNeasy Blood and tissue kit (Qiagen Ltd) according to 

manufacturer’s instructions using 3 mm3 of tissue, with elution into 200 μl of buffer AE. 

Microsatellite genotyping. 

Individuals were genotyped at ten microsatellite loci: Igf-I (Kirkpatrick 1992, Andersen et al 

1997), 415/416 (Amos et al 1993, Andersen et al 1997), GT015 (Amos et al 1993, Andersen et 

al 2001), EV94 (Valsecchi and Amos 1996), PPH110, PPH104, PPH130, PPH137 (Rosel et al 1999 

b), GT011 (Bérubé et al 1998) and GATA053 (Palsbøll et al 1997). Primer sequences are 

provided in Table 2. 

PCRs were carried out in a 10µl volume containing 10 - 15 ng of DNA, 0.2 mM dNTP’s, 5 pmol 

of each primer and 0.5 units of Taq polymerase (Bioline Ltd). Overall MgCl2 concentrations are 

given at Table 2. For loci Igf-I, EV94, PPH110, GT011 and PPH130 PCR temperature profiles had 

an initial denaturation step of 2 min at 95°C, followed by 20 TouchDown cycles from 60 to 

50°C in 0.5°C decrements (denaturation at 92°C for 30 s, annealing for 1 min, elongation at 

72°C for 30 s). The programme was completed with 20 standard cycles of denaturation at 

92°C for 30 s, annealing at 50°C for 30 s, elongation at 72°C for 30 s with a final elongation 

step at 72°C for 2 min. For PPH104 the TouchDown profile was from 65 to 55°C in 0.5°C 

decrements and the programme was completed with 18 standard cycles (denaturation at 94°C 

for 30 s, annealing at 55°C for 30 s, elongation at 72°C for 30 s). GATA053 was amplified 

following a 10 TouchDown cycles from 60 to 65°C in 0.5°C decrements (denaturation at 94°C 

for 30 s, annealing for 1 min, elongation at 72°C for 1 min). The programme was completed 

with 20 standard cycles (denaturation at 94°C for 30 s, annealing at 60°C for 30 s, elongation 
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at 72°C for 1 min) and a final elongation step at 72°C for 2 min. 415/416, GT015 and PPH137 

was amplified following Fontaine et al 2006. 

Forward primers were labelled with 6-FAM, HEX or NED fluorescent labels (Table 2). The PCR 

products from three different PCRs involving different fluorescent labels were mixed in equal 

volumes, diluted 1 in 10 then genotyped on an automatic ABI 3730 capillary DNA sequencer 

(Sequencing Service, University of Dundee, UK).  

Microsatellite analysis. 

Genotypes were scored by eye using the software GENEMARKER 1.4 (SoftGenetics 2010). 

The absence of null alleles and large allele dropout was confirmed using MICROCHECKER 2.2.3. 

(van Oosterhout et al 2004). Genetic diversity was assessed by the number of alleles, number 

of private alleles and allelic richness using the software FSTAT2.9.3.2 (Goudet 1995, 2002). The 

software STRUCTURE2.2. (Pritchard et al 2000) was used to determine the most probable 

number of putative populations (K) that best explained the pattern of genetic variability. The 

number of assumed genetic clusters (K) was set from 1 to 10 due to the different geographical 

origin of the samples and 10 runs were performed for each K with burn-in of 10,000 and 

50,000 simulations using the admixture ancestry model with correlated allele frequencies. 

STRUCTURE HARVESTER 0.6.7 (Earl 2011) was used to collate the results and infer the 

statistically best supported K using the DK statistic (Evanno et al 2005). Replicate runs for each 

K were aligned and averaged in CLUMPP1.1.2 (Jakobsson and Rosenberg 2007), using the 

Greedy alignment algorithm with 10 randomised input orders, and visualised using 

DISTRUCT1.1 (Rosenberg 2004). 

In order to visualize the genetic relationship among individuals belonging to the different 

geographic regions, factorial correspondence analyses (FCA) were carried out using the 

Genetix 4.05 program (Belkhir et al 1996-2004). 

Global and pairwise genetic differentiation among ten populations using Structure were 

estimated using the statistics D (Jost 2008) and FST (Wright 1951). The software SPADE (Chao 

and Shen 2010) was used to calculate an adjusted estimator for global and pairwise D (Dest) 

with 95% confidence intervals (CI) constructed from 1000 bootstrap replicates using a 

percentile method and re-centering (Chao and Shen 2010). FST estimates (Weir and Cockerham 

1984) were calculated in FSTAT2.9.3.2 (Goudet 1995, 2002). 
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Population differentiation was also tested using a hierarchical analysis of molecular variance 

(AMOVA) in ARLEQUIN 3.5.1.2 (Excoffier and Lischer 2010) that partitions genetic variation 

among groups as defined from the Structure analysis, within groups and among populations, 

and within populations. 

Observed (Ho) and expected (He) heterozygosities were calculated at each locus and for each 

population, and deviations from the Hardy–Weinberg equilibrium were tested using the 

Markov chain method (chain length: 1000000, dememorization steps: 100000) with ARLEQUIN 

3.5.1.2. For each population, the overall deviation from the Hardy–Weinberg equilibrium was 

estimated based on FIS values (10000 randomisations) using the software FSTAT 2.9.3. 

Mitochondrial DNA sequencing. 

Three different regions of the mtDNA were sequenced: Control Region (mcr), ATPase 6 and 8 

(ATP), and NADH dehydrogenase 5 (ND5) (Table 6). For mcr a 488 bp fragment was amplified 

using the primers mcrf and mcrr, derived from L15928 and HOOO34 (Rosel et al 1995, Kocher 

et al 1989). For ATP a 1061 bp fragment and for ND5 a 1007 pb fragment were amplified using 

the primers used by Fontaine et al (2014) (Table 5). All PCR reactions were carried out in a 50 

µl final volume containing 10 - 15 ng of DNA, 0.2 mM dNTPs, 5 pmol of each primer, 2.5 mM 

MgCl2 and 0.1 units of Taq polymerase (Bioline Ltd). Cycling parameters for the mcr 

amplification were: an initial denaturation step at 95°C for 2 min followed by 5 cycles of 95°C 

for 30 s, 46°C for 30 s and 72°C for 60 s each, followed by 35 cycles consisting 95°C for 30 s, 

53°C for 30 s and 72°C for 60 s. Reactions were ended by a final extension step of 10 min at 

72°C (Alfonsi et al 2010). For ATP and ND5 an initial denaturation step at 95°C for 2 min was 

followed by 35 cycle of denaturation at 95°C for 1 min, primers hybridization at the gene 

specific annealing temperature (Ta) provided in the Table 5 for 1 min, and an elongation step at 

72°C for 1.5 min, with a final elongation step at 72°C for 30 min (Fontaine et al 2014). PCR 

products were purified using the QIAquick PCR Purification Kit (QIAGEN) according to the 

manufacturer’s instructions and diluted to 2ng ul-1. Using the same forward primers as were 

used in the original PCR, DNA sequencing was performed by Eurofins MWG GmbH, Ebersberg, 

Germany. 

All sequences were checked by eye and aligned using MEGA 4.0 (Tamura et al 2007). 

Sequences were confirmed as mitochondrial control region, ATP and ND5 sequences by 

National Center for Biotechnology Information (NCBI) BLAST comparison. Novel haplotypes 

were deposited in GENBANK under accession numbers KM233834, KM233835 and KM233836. 
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A median-joining network was constructed for each locus using the program NETWORK 4.6.1.1 

(Bandelt et al 1999). 

Population differentiation was estimated as FST, using the program ARLEQUIN 3.5.1.2., and as 

Dxy, using DnaSP version 5.10 (Librado and Rozas 2009). Haplotype diversity (Hd) and 

nucleotide diversity (π) were estimated using ARLEQUIN 3.5.1.2. 

Historical demography was assessed using mismatch distribution. Observed and expected 

numbers of pairwise nucleotide differences under a model of sudden expansion were 

calculated for every sampling area using DnaSP version 5.10 and Arlequin version 3.5.1.2. The 

fit of observed and expected distribution was tested using Harpending’s raggedness index (r; 

Harpending 1994). 

To quantify the genetic divergence between samples an Analysis of Molecular Variance 

(AMOVA) was undertaken using ARLEQUIN 3.5.1.2., apportioning variance among groups as 

defined by the Structure analysis, within groups and among populations and within 

populations. 
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Results 

Microsatellites. 

In total, 310 individuals (59 from Galicia, 2 from the Basque Country, 2 from Huelva, 118 from 

Portugal, 24 from France, 16 from Belgium, 24 from England, 25 from Scotland, 24 from 

Ireland and 16 from Turkey; Fig.6)  were genotyped at 10 microsatellite loci. The number of 

alleles per microsatellite locus ranged from nine (loci GATA053) to 24 (loci GT015) (Table 2). 

 

Figure 6. Sampling locations and sizes for harbour porpoise (Phocoena phocoena) for 

microsatellite analyses;  GAL Galicia, BCO Basque Country, HUEL Huelva, PT Portugal, FRA 

France, BELG Belgium, IREL Ireland, ENG England, SCOT Scotland, TUR Turkey. 
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Locus name Primer sequence Ta (°C) Mg2+ (mM) Size range (bp) Na 

Igf-I 
a, b

 6FAM-GGGTATTGCTAGCCAGCTGGT TD 60 → 50 2,5 127-153 15 

 

CATATTTTTCTGCATAACTTGAACCT 

    415/416 
c
 NED-GAGAATGGCTGGGCTCAGATC TD 50  → 41 2,5 205-283 10 

 

TTCCCTATTAGAGGCTCACGA 

    GT015 
d, e

 NED-GAGAATGGCTGGGCTCAGATC 58°C 2,5 120-172 24 

 

TTCCCTATTAGAGGCTCACGA 

    EV94 
f
 6FAM-ATCGTATTGGTCCTTTTCTGC TD 60 → 50 1,5 184-206 10 

 

AATAGATAGTGATGATGATTCACACC 

    PPH110 
g
 HEX-ATGAGATAAAATTGCATAGA TD 60 → 50 2,5 99-125 11 

 

ATCATTAACTGGACTGTAGACCTT 

    PPH104 
g
 HEX-CCTGAGGTGTGTAGTCA TD 65  → 55 2,5 142-188 18 

 

GACCACTCCTTATTTATGG 

    GT011 
h
 NED-CATTTTGGGTTGGATCATTC TD 60  → 50 2,5 96-132 14 

 

GTGGAGACCAGGGATATTG 

    PPH130 
g
 NED-CAAGCCCTTACACATATG TD 60  → 50 2,5 158-198 16 

 

TATTGAGTAAAAGCAATTTTG 

    PPH137 
g
 6FAM-CAGGGCGGCCATGTACAGTTGAT 58°C 1,5 98 - 122 13 

 

GAGTTTGGCTCCCTCTCCAG 

    GATA053 
i
 6FAM-ATTGGCAGTGGCAGGAGACCC TD 65 → 60 2,5 247-271 9 

  GACACAGAGATGTAGAAGGAG         

 

Table 2.   Characterisation of 10 microsatellite loci for harbour porpoise. Ta, annealing 

temperature; Na, number of alleles.TD, Touch Down annealing temperature gradient. a 

Kirkpatrick 1992, b Andersen et al 1997, c Sclöetterer et al 1991, d Amos et al 1993, e Andersen 

et al 2001, f Valsecchi & Amos 1996, g Rosel et al 1999 b, h Bérubé et al 1998, i Palsbøll et al 

1997. 

MICROCHECKER analyses showed the possible presence of null alleles at loci GT015 and 

GATA053, from heterozygote deficiencies. However, as this was not consistent across 

populations for any locus, it was considered that this was not due to null alleles. 

The best supported number of a posteriori genetic clusters for STRUCTURE analyses based on 

ΔK statistic was K=2 for the standard admixture model (ΔK= 97; Fig.7). One group comprised 

Galicia, Basque Country, Huelva and Portugal, and the other one the rest of the populations 

(Fig.8). The second best supported number of groups was K=3 (ΔK= 22) which divided the 

samples in one group for Galicia, Basque Country, Huelva and Portugal, a second group for the 

rest of Europe and a third group for Turkey. 
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Figure 7. Results of STRUCTURE analysis, showing mean probabilities of the data (LnPr(x|k)) 

based on 10 STRUCTURE replicated runs plotted as a function of the putative number of 

clusters (K). 
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Figure 8. Estimated proportions of the coefficient of admixture of each individual’s genome that originated from population K, for K= 2 to 10. Each individual 

is represented by a column.
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The FCA analysis confirmed a level of population structure among samples (Fig.9). Analyses 

show three groups: 1) Spain and Portugal, 2) rest of Europe, and 3) Black Sea; with the two first 

principal coordinates explaining 52.19% of the variation.

 

Figure 9. Principal coordinates analysis, PCoA, based on genetic distances between individuals, 

showing main patterns of data variation over 10 loci: 52.19% of the variability explained by 

principal coordinates 1 and 2. Population names as in Fig. 6. 

Pairwise genetic differentiation among the 10 populations and using k=3 were calculated as FST 

and Dest (Table 3). Differences between Galicia and Portugal for FST were not significant, but 

were significant to the other locations except for Huelva and Basque Country, although the low 

number of samples for those areas has to be kept in mind. Turkey was also significantly 

different to the rest of the populations excepting Huelva and Basque Country; this 

differentiation was greater with Spain and Portugal than with the rest of Europe, supporting 

the Structure results for k=3. Huelva and Basque Country were not different to any other 

population. France, Belgium, Ireland, Scotland and England were only significantly different to 

Spain, Portugal and Turkey. 

The Dest estimate was also not significant for Galicia versus Portugal, and Huelva versus the rest 

of populations. France, Belgium, Ireland, England, Scotland and Basque Country only showed 

significant differences with Galicia, Portugal and Turkey. 

For K=3 all FST and Dest estimates were significant (Table 3b). 
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Population N PORT GAL FRA BELG IREL ENG 

N   118 59 24 16 24 24 
PORT 118 - -0.001 (0.000, 0.015) 0.091 (0.040, 0.152) 0.169 (0.095, 0.240) 0.134 (0.077, 0.194) 0.177 (0.119, 0.242) 
GAL 59  0.0039 - 0.105 (0.058, 0.159) 0.190 (0.120, 0.259) 0.142 (0.090, 0.201) 0.199 (0.145, 0.256) 
FRA 24  0.0431***  0.0510*** - 0.021 (0.000, 0.104) 0.003 (0.000, 0.062) 0.042 (0.000, 0.109) 

BELG 16  0.0789***  0.0909***  0.0097 - -0.001 (0.000, 0.072) -0.024 (0.000, 0.047) 
IREL 24  0.0621  0.0686***  0.0028  0.0076 - -0.001 (0.000, 0.053) 
ENG 24  0.0839***  0.0959***  0.0159 -0.0012  0.0066 - 
SCOT 25  0.0945***  0.0996***  0.0129  0.0138  0.0209  0.0124 
TUR 16  0.2119***  0.2120***  0.1145***  0.1207  0.0947  0.1166*** 
BCO 2  0.1620  0.1816***  0.0591  0.0558  0.0590  0.0683 
HUEL 2  0.0350  0.0510 -0.0174 -0.0030 -0.0135  0.0007 

Population N SCOT TUR BCO HUEL 

N   25 16 2 2 
PORT 118 0.215 (0.152, 0.275) 0.404 (0.329, 0.485) 0.261 (0.087, 0.440) -0.014 (0.000, 0.184) 
GAL 59 0.219 (0.165, 0.275) 0.398 (0.325, 0.467) 0.296 (0.134, 0.454) -0.003 (0.000, 0.190) 
FRA 24 0.025 (0.000, 0.087) 0.260 (0.180, 0.346) 0.127 (0.000, 0.320) -0.096 (0.000, 0.101) 

BELG 16 0.014 (0.000, 0.085) 0.228 (0.136, 0.339) 0.067 (0.000, 0.299) -0.022 (0.000, 0.237) 
IREL 24 0.050 (0.000, 0.119) 0.207 (0.120, 0.299) 0.114 (0.000, 0.330) -0.067 (0.000, 0.147) 
ENG 24 0.024 (0.000, 0.080) 0.264 (0.182, 0.351) 0.115 (0.000, 0.332) -0.011 (0.000, 0.227) 
SCOT 25 - 0.297 (0.215, 0.390) 0.210 (0.000, 0.408) 0.061 (0.000, 0.284) 
TUR 16  0.1279 - 0.264 (0.069, 0.462) 0.049 (0.000, 0.280) 
BCO 2  0.0674  0.1967 - 0.218 (0.000, 0.478) 
HUEL 2  0.0291  0.0841  0.0693 - 

 

Table 3. Estimates of population differentiation expressed as FST (below diagonal) and Dest (above diagonal) based on microsatellite length polymorphism 

for a) 10 populations where significance indicated at strict Bonferroni-corrected level (α=0.00111). N: sample sizes. Population names as in Fig. 6. 
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Population N Group 1 Group 2 Group 3 

N 
 

181 113 16 
Group 1 181 - 0.157 (0.128, 0.186) 0.394 (0.327, 0.466) 

Group 2 113  0.0655*** - 0.250 (0.186, 0.318) 

Group 3 16  0.2046***  0.0987*** - 

 
Table 3. b) k=3, where significance indicated at strict Bonferroni-corrected level 

(α=0.01667***). N: sample sizes. Population names as in Fig. 6. 

Analyses of molecular variance (AMOVA) revealed significant divergence among populations 

(Table 4). Most genetic variation occurred within populations (89.93%). The second largest 

variance component was attributed to divergence among groups (9.10%), while the smallest 

fraction of the variance was due to divergence among populations within groups (0.97%). 

Regions 
Degrees 

of 
freedom 

Sum  
of 

squares 

Variance 
components 

P-value 
Percentage 

of 
 variation 

Among groups 2 42.295 0.11823 0.00098+-0.00098 9.10 

Within groups among populations 7 12.569 0.01262 0.00293+-0.00164 0.97 

Within populations 608 710.330 116.831 0.00000+-0.00000 89.93 

Table 4. Analyses of molecular variance (AMOVA) for microsatellite data. 

Allele frequencies for populations and k=3 are shown in Appendix I. Galicia was the population 

with the most private alleles and none were found for Portugal or Basque Country, but in the 

latter case it could be due to small sample size (Fig. 5). Allelic richness was highest in Ireland 

and smallest in Turkey. For K=3, Group 2 (rest of Europe) had the highest number of private 

alleles and highest allelic richness, while Group 3 (Turkey) had only one private allele and the 

lowest allelic richness. 

Significant deviations from Hardy–Weinberg equilibrium (α =0.05) based on FIS estimates were 

found for loci Igf-1 and GT015 for the Scottish putative population. For the Structure-derived 

k=3 grouping, deviations were found in loci GT015 and GATA053 for Group 2.
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  BCO HUEL 

N 2 2 

Private alleles 0 1 

Average±SD 
     Nalleles 2.778 ± 0.667 2.556 ± 0.882 

   Allelic richness 1.717 ± 0.273 1.717 ± 0.324 

   Ho 0.778 ± 0.363 0.722 ± 0.363 

   He 0.796 ± 0.111 0.796 ± 0.217 

Fis  0.034  0.182 

 

Table 5. a) Within population measures of nuclear DNA genetic diversity calculated over 10 loci for 10 populations. N alleles, number of alleles; Ho, observed 

heterozygosity; He, expected heterozygosity and Wright’s FIS with significance indicated at strict Bonferroni-corrected level (α=0.00050***). Population 

names as in Fig. 6.

  PORT GAL FRA BELG IREL ENG SCOT TUR 

N 118 59 24 16 24 24 25 16 

Private alleles 0 6 4 1 3 4 2 1 

Average±SD 
           N alleles 9.200 ± 4.962 9.000 ± 4.922 8.600 ± 3.307 7.900 ± 3.348 9.100 ± 3.213 9.100 ± 4.149 9.000 ± 4.346 4.800 ± 1.398 

   Allelic richness 1.610 ± 0.214 1.610 ± 0.203 1.762 ± 0.176 1.754 ± 0.259 1.768 ± 0.171 1.761 ± 0.238 1.767 ± 0.216 1.549 ± 0.182 

   Ho 0.585 ± 0.209 0.590 ± 0.216 0.688 ± 0.198 0.769 ± 0.307 0.759 ± 0.273 0.761 ± 0.296 0.662 ± 0.227 0.524 ± 0.231 

   He 0.610 ± 0.203 0.620 ± 0.214 0.763 ± 0.172 0.754 ± 0.259 0.768 ± 0.170 0.761 ± 0.238 0.767 ± 0.216 0.549 ± 0.182 

Fis 0.048  0.041  0.095 -0.021  0.012  0.001  0.139***  0.047 
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  Group 1 Group 2 Group 3 

N 181 113 16 

Private alleles 7 14 1 

Average±SD 
      Nalleles 10.900 ± 4.977 12.700 ± 4.270 4.800 ± 1.398 

   Allelic richness 5.115 ± 2.731 7.372 ± 2.620 4.183 ± 1.179 

   Ho 0.588 ± 0.203 0.723 ± 0.228 0.524 ± 0.231 

   He 0.620 ± 0.203 0.771 ± 0.207 0.549 ± 0.182 

Fis  0.051  0.062  0.047 

 

Table 5. b) Within population measures of nuclear DNA genetic diversity calculated over 10 loci 

for k= 3. N alleles, number of alleles; Ho, observed heterozygosity; He, expected 

heterozygosity and Wright’s FIS with significance indicated at strict Bonferroni-corrected level 

(α=0.00050***). Population names as in Fig. 6. 

Mitochondrial DNA sequences.  

A total of 20 individuals from Spain, Portugal and Belgium was amplified and sequenced for the 

three different mtDNA regions (Control Region, ATP and ND5, Table 6) to examine if all the 

markers needed to be used to properly examine relative levels of genetic diversity and 

differentiation, or whether this could be achieved with fewer markers. For mcr, five haplotypes 

with nine variable sites were found (Table 7); for ATP, seven haplotypes could be differentiated 

with 11 variable sites and five haplotypes were identified for ND5 with eight variable sites. 

Median-joining networks were drawn for each marker (Fig. 10). There was no evidence that 

more information was obtained by using all three markers and therefore only the mcr was 

used. 

Locus Primer sequence Fragment size (bp) Ta (°C) 

Control region a ACCTCGGTCTTGTAAACC 623 46 and 53 

 
ACCAAATGAATGAAATCTCAG 

  ATP b CTAATATCAACACGACCTG 873 51 

 
TATCTCGTCATCACTGGTA 

  ND5 b GGTGCAACTCCAAATAA 1535 53 

  GTTGCGAGTTTTTGGC     

 

Table 6. Characterisation of three primer pairs to amplify mitochondrial DNA regions in 

harbour porpoise. a derived from primers L15928 and HOOO34 (Rosel et al 1995, Kocher et al 

1989); b Fontaine et al unpublished data. 
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mcr Variable sites 
 

Population 

 
0 0 0 0 0 0 0 2 2 

    

 
0 1 2 5 6 8 9 3 4 

    

 
7 8 8 1 5 1 1 5 0 

 
SP PT BEL 

Hap_1 A G A T T G T T C 
 

3 2 0 

Hap_2 . . G . . . . . T 
 

1 1 0 

Hap_3 G A G C C . . . . 
 

1 0 2 

Hap_4 . . G . . A . . . 
 

0 4 0 

Hap_5 . . G . . . A C . 
 

0 1 0 

 

ATP Variable sites 
 

Population 

 
0 0 0 0 0 0 0 0 0 0 1 

    

 
0 2 3 3 4 5 6 7 8 9 0 

    

 
3 6 5 6 4 9 1 6 0 2 3 

    

 
8 2 6 3 5 5 3 3 9 9 6 

 
SP PT BEL 

Hap_1 C G C T G T C A A C C 
 

1 0 0 

Hap_2 . . . . . . . . G . . 
 

4 5 0 

Hap_3 T A T C . C T . G . . 
 

1 0 0 

Hap_4 . . T . . . . . G . . 
 

1 1 0 

Hap_5 . . T . A . . . G . . 
 

0 1 0 

Hap_6 . . . . . . . . G G G 
 

0 1 0 

Hap_7 T A T C . C T T G . . 
 

0 0 2 

 

ND5 Variable sites 
 

Population 

 
0 0 0 0 0 0 0 0 

    

 
0 1 3 3 4 6 7 7 

    

 
9 0 3 7 9 1 1 4 

    

 
3 0 1 0 6 7 9 0 

 
SP PT BEL 

Hap_1 T A C G C A A A 
 

1 1 0 

Hap_2 . . . . . . . C 
 

4 2 0 

Hap_3 . G T A T G G C 
 

1 0 1 

Hap_4 C G . A T G . C 
 

0 1 0 

Hap_5 C . . A . . . C 
 

0 1 0 

Table 7. Haplotypes and variable sites for the 3 genes (mcr 334pb, ATP 1061bp, ND5 1007bp) 

sequenced for samples from SP Spain, PT Portugal and BEL Belgium. 
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Figure 10. Haplotype network for ATP, ND5 and mcr occurring in Spain, Portugal and Belgium. 

Red numbers are the mutated positions. 

A total of 167 samples from Spain, Portugal and Belgium were successfully sequenced for 488 

bp of mcr. In order to allow direct comparison with sequences available in GenBank, the size of 

the sequences obtained in this study were truncated to 334 bp. This mtDNA dataset was 

combined with 1352 previously published mtDNA sequences all coming from harbour 

porpoises, in order to obtain a wide picture of the mtDNA structure (Fig. 11). One hundred and 

eleven different mcr haplotypes were found (Appendix II; correspondence between haplotypes 

and accession numbers of GeneBank is given in Appendix III); three haplotypes were newly 

discovered. Seventy-six polymorphic sites were found, with 69 transitions and 12 

transversions. Occurrence of the haplotypes and relative frequencies for the nine populations 

and k=4 are shown in Appendix IV and Appendix V respectively. Unique haplotypes were found 

in all populations except Spain, and in all four groups of k=4. The most common haplotype 

(49.37% of the sequences) was Hap_4, which was present in SP, NE1, NE2, WGLD and ICL for 

populations, and was only absent in Group 4 for K=4. 
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Figure 11. Sampling locations and sizes for harbour porpoise (Phocoena phocoena) for mtDNA 

analyses;  WGLD West Greenland, ICL Iceland, NE1 North Sea, English Channel, Ireland/Celt 

area  and Norway, NE2 Baltic area, SP Spain, PT Portugal, WA West Africa, BS Black Sea, 

Aegean and Marmara Sea AMS. a, our study; b, Tiedemann et al 1996; c, Walton 1997; d, Tolley 

et al 2001; e, Tolley and Rosel 2006; f, Viaud-Martínez et al 2007; g, Wiemann et al 2010; h, 

Alfonsi et al 2012. 

The overall nucleotide diversity (π) and haplotype diversity (Hd) were estimated to be 0.0083 

(± 0.0048) and 0.7320 (± 0.115) respectively (Table 8). Both estimates were smaller for NE2 

and higher for ICL when looking for populations. For k=4 the smaller lowest estimates were for 

Group 4 and the highest for Group 3. 
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a) 

Population SP PT WA NE1 NE2 WGLD ICL 

N 60 108 5 710 401 75 45 

π (±SD)  0.0030 ± 0.0023  0.0030 ± 0.0023 0.0066 ± 0.0051 0.0064 ± 0.0039 0.0018 ± 0.0016 0.0110 ± 0.0063 0.0114 ± 0.0064 

Hd (±SD) 0.5972 ±  0.0495 0.6284 ± 0.0321 0.8000 ± 0.1640 0.6675 ± 0.0179 0.3125 ± 0.0306 0.9491 ±  0.0130 0.9186 ± 0.0230 
Tv/Ts 1/7 1/11 1/4 4/44 4/19 1/24 3/39 

 

Population AMS BS 

N 9 104 

π (±SD)  0.0030 ± 0.0030 0.0026 ± 0.0021 

Hd (±SD) 0.5000 ± 0.2652 0.4206 ± 0.0615 
Tv/Ts 0/2 0/15 

 

b) 

Population Group 1 Group 2 Group 3 Group 4 

N 173 1111 122 113 

π (±SD)  0.0033 ± 0.0024 0.0052 ± 0.0033 0.0112  ± 0.0063 0.0028 ± 0.0022 

Hd (±SD) 0.6368 ± 0.0269 0.5586 ±  0.0176 0.9376 ± 0.0126 0.4488 ± 0.0604 
Tv/Ts 1/11 7/52 4/44 0/16 

 

Table 8. Within population measures of mitochondrial DNA genetic diversity: nucleotide diversity, π (±SD) and haplotype diversity, Hd (±SD), Tv/Ts; a) at K= 

4, b) at the 9 populations studied. Population names as in Fig. 11. 



88 
 

Mismatch distribution analyses indicated that the SP, PT, WGLD and ICL populations had a 

genetic signal of a sudden expansion, exhibiting unimodal distributions with low raggedness 

indices (Fig. 12). Both the populations of North Europe and BS were in demographic 

equilibrium with high raggedness indices. However, only West Greenland had a significant p-

value. Due to the small sample size of WA and AMS, results cannot be considered. For K=4, 

Groups 1 and 2 have low raggedness indices, fitting the expansion model, and 3 and 4 had high 

values, fitting the equilibrium, but only Group 4 has a significant p-value. 

SP 

a) b) 

 
PT 

a) b) 

 
 

Figure 12. Mis-match distribution graphs calculated using the distance method Pairwise 

difference, for a) a constant population and b) a population growth-decline, for the 9 

populations studied  and K = 4 for the mitochondrial control region. Population names as in 

Fig. 11. 

 

 

 

 

 

 

 

 

Raggedness index = 0.08068 
P = 0.38000 

Raggedness index = 0.08127 
P = 0.08000  
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WA 

a) b) 

 
NE1 

a) b) 

 
NE2 

a) b) 

 
WGLD 

a) b) 

 
 

Figure 12. Continued. 

 

 

Raggedness inde x= 0.28000 
P = 0.49000  

Raggedness index = 0.10362 
P = 0.32000  

Raggedness inde x=  0.05796 
P = 0.00000  

Raggedness inde x=  0.28221 
P = 0.53000  
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ICL 

a) b) 

 
AMS 

a) b) 

 
 

BS 

a) b) 

 
 

Figure 12. Continued. 
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Raggedness index = 0.28221 
P = 0.53000  

Raggedness index =  0.01622 
P = 0.66000  

Raggedness index =  0.75000 
P = 0.37000  

Raggedness index =  0.60211 
P = 0.93000  
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Group 1. 

a) b) 

 
Group 2 

a) 

 

b)

 
Group 3 

a) b)

 
Group 4 

a) b) 

 
 

Figure 12. Continued. 

 

 

 

 

Raggedness index = 0.06641 
P = 0.24000 

Raggedness index = 0.13296 
P = 1.00000 

Raggedness index = 0.02438 
P = 0.27000 

Raggedness index = 0.61593 
P = 0.00000 
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A median-joining network was drawn for all the mcr haplotypes and coded according to a k=4 

population subdivision (Fig. 13). The network showed five principal haplotypes (Hapl_4, 

Hapl_1, Hapl_62, Hapl_21, Hapl_44) with only one (Hapl_44) absent from the second group. 

Although there was no clear clustering based on population origin, haplotypes present in 

Group 4 formed a different group, sharing no haplotypes with the rest of the groups. As seen 

before, all groups had unique haplotypes. 

 

Figure 13. Haplotype network of haplotypes for mcr occurring in K = 4. 

For Dxy, the biggest differentiation was found for AMS and BS versus the rest of populations 

from Europe (Table 13), WA and AMS being the most different populations (Dxy = 0.0204). The 

most similar populations were SP and PT (Dxy = 0.0030); other low values were found for NE1 

versus NE2, and BS versus AMS. When populations were grouped using k = 4, Group 4 was the 

most different from the rest, in contrast Group 2 and 3 were the most similar. 

There were significant genetic differentiations, expressed as FST, between all the populations 

except for SP versus PT and WGLD versus ICL (Table 13). The differentiation between AMS and 

BS was less significant than between the rest of locations. For k=4, all comparisons revealed 

significant differences. 
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a) 

Population N SP PT WA NE1 NE2 WGLD ICL AMS BS 

N 
 

60 108 5 710 401 47 75 9 104 

SP 60 - 0.0030 0.0084 0.0091 0.0114 0.0096 0.0104 0.0140 0.0125 

PT 108 -0.00502 - 0.0088 0.0101 0.0125 0.0105 0.0113 0.0146 0.0131 

WA 5 0.57066*** 0.56226*** - 0.0129 0.0143 0.0118 0.0148 0.0204 0.0182 

NE1 723 0.50955*** 0.52648*** 0.48962*** - 0.0048 0.0093 0.0088 0.0162 0.0139 

NE2 418 0.86527*** 0.86188*** 0.86275*** 0.16562*** - 0.0100 0.0086 0.0214 0.0192 

WGLD 11 0.41688*** 0.47007*** 0.28688*** 0.11406*** 0.56318*** - 0.0112 0.0179 0.0184 

ICL 84 0.43570*** 0.48650*** 0.32928*** 0.06777*** 0.43006*** 0.01113 - 0.0184 0.0171 

AMS 4 0.80998*** 0.80992*** 0.73705*** 0.66285*** 0.91529*** 0.46061*** 0.44661*** - 0.0040 

BS 106 0.78091*** 0.77612*** 0.80736*** 0.62905*** 0.88802*** 0.59041*** 0.55274*** 0.44716** - 

 
b) 

Population N Group 1 Group 2 Group 3 Group 4 

N 
 

173 1111 122 113 

Group 1 173 - 0.0101 0.0103 0.0127 

Group 2 1116 0.62590*** - 0.0089 0.0149 

Group 3 122 0.45173*** 0.15864*** - 0.0170 

Group 4 108 0.75833*** 0.70157*** 0.51335*** - 

 
Table 9. Estimates of population differentiation for a) 9 populations, b) K= 4, expressed as Dxy (above diagonal) and FST (below diagonal) based on 

mitochondrial data. For FST **0,001 < P < 0.01 and ***P < 0.00001. N: sample sizes. Population names as in Fig. 11. 
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For mcr, AMOVA revealed significant divergence within groups among populations and within 

populations (Table 10). Most genetic variation occurred within populations (43.56%). The 

second largest variance component was attributed to divergence among groups (35.46%) but 

was not significant, while the smallest fraction of the variance was due to divergence among 

populations within groups (20.98%). 

Regions 
Degrees 

of 
freedom 

Sum of 
squares 

Variance 
components 

P-value  
Percentaje 
of variation 

Among groups 3 554.999 0.67444 0.0948 ± 0.0085 35.46 

Within groups among populations 5 304.246 0.39898 0.0000 ± 0.0000 20.98 

Within populations 1510 1.250.862 0.82839 0.0000 ± 0.0000 43.56 

 

Table 10. Analyses of molecular variance (AMOVA) for mitochondrial at the 9 populations. 

The sex was known for 54 individuals from SP (28 females and 26 males) and 77 from PT (42 

females and 35 males). To see if there was any difference between sexes a median-joining 

network was drawn (Fig. 14), showing that in Portugal males had more haplotypes than 

females and all haplotypes present in females were shared with males. Genetic diversity values 

expressed as nucleotide diversity and haplotype diversity from mitochondrial data were also 

calculated (Table 11). The nucleotide diversity was lower in Spanish samples than in 

Portuguese individuals. Spanish males had the lowest haplotype diversity of the four groups (k 

= 4). 

 

Figure 14. Haplotype network for 3 mcr for females and males from Iberian Peninsula. 
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Both Dxy and FST showed higher values for males than females when comparing these two 

populations (Dxy females = 0.0172, Dxy males = 0.0399, FST females = 0.0026, FST males = 

0.0042). 

Population SP_F SP_M PT_F PT_M 

N 28 26 42 35 

π (±SD)  0.0023 0.0027 0.0030 0.0042 

Hd (±SD) 0.6123 0.4800 0.6307 0.6277 

 

Table 11. Measures of mitochondrial DNA genetic diversity for females and males from Spain 

and Portugal: nucleotide diversity, π (±SD) and haplotype diversity, Hd (±SD). SP_F, Spain 

females, SP_M, Spain males, PT_F, Portugal females, PT_M, Portugal males. 
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Discussion 

The salient feature of the present study is the high level of genetic structure that has been 

resolved using both microsatellite and mitochondrial DNA markers for harbour porpoises 

across the Northeast Atlantic and Black Sea. Some of these findings are consistent with 

previous studies, but other aspects provide new information to increase the understanding of 

the patterns, causes and consequences of genetic structure. 

The Structure-based analyses of microsatellite structure identified three main groups: the 

Iberian Peninsula, the rest of Northeast Atlantic, and the Black Sea. This division is the same as 

previously found (e.g. Rosel et al 1995); however what was unexpected was that Structure 

separated Iberia from the other samples before it identified the Black Sea as a separate 

genetic grouping. Black Sea porpoises have previously been described as an isolated 

population and classified as the subspecies Phocoena phocoena relicta (Abel 1905), supported 

by genetic and morphological data (Rosel et al 1995, 2003, Gol’din 2004, Tolley and Rosel 

2006, Viaud-Martinez et al 2007, Fontaine et al 2007, 2010, Galatius and Gol’din 2011, Tonay 

et al 2012). 

In the Black Sea population several private alleles were resolved and overall this population 

had the smallest allelic richness. Fontaine et al (2012) detected a recent decline in the Black 

Sea population, which could explain the results of the present study, given the likelihood of 

increased effects of genetic drift leading to lower heterozygosity (Garner el at 2005). This 

population was found to be significantly different from the population of the Iberian Peninsula 

and moderately, yet significantly, different with the populations from France and England, but 

not significantly different from Belgium, Ireland and Scotland, which is surprising and could 

explain the results of the Structure-based analyses. 

Also it was found that the mitochondrial haplotype diversity in the Black Sea and Aegean-

Marmara Sea was the lowest of all populations studied. The same result was found in other 

studies (Rosel et al 1995, 1999 a, Tiedemann et al 1996, Tolley et al 1999, 2001, Tolley and 

Rosel 2006, Walton 1997, Wang and Berggen 1997, Wiemann et al 2010), though Wang and 

Werggen (1997) found even lower diversity in the Skagerrak and Kattegat. 

A median joining network of mtDNA sequences highlights the isolation of the Aegean-

Marmara Sea and Black Sea populations, which share only one haplotype with other 

populations. This difference is echoed by significant values for FST for mtDNA with the other 
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regions studied. A significant difference was also observed between the Aegean – Marmara 

Seas and the Black Sea, which is in accordance with the previous work of Viaud-Martinez 

(2007). Tonay et al (2012) supports the possibility of an isolated population in the Marmara 

Sea. Given that Fontaine et al (2012) did not detect significant differences between porpoises 

from the Aegean and Black Sea, this suggests that, despite now being isolated, Aegean Sea 

porpoises come from the Black Sea rather than the Atlantic population.  

The mismatch distribution in the Black Sea showed a high raggedness index but no significant 

differences from the distribution expected under equilibrium, which does not agree with the 

idea of demographic expansion once the Black Sea was reconnected with the Mediterranean 

previously reported (Fontaine et al 2012). 

The other main separation resolved with the Structure analysis was the Iberian Peninsula and 

the rest of Northeast Atlantic. Here, no private alleles were found in Portugal and the Basque 

Country, though this may be due to small sample size. Heterozygosity for the Iberian 

Peninsula, was higher than values found by Fontaine et al (2007).  

Using the microsatellite markers, we detected genetic differentiation between Galicia and 

Portugal and the rest of the populations. Similar results were obtained in previous studies 

(Tolley and Rosel 2006, Fontaine et al 2007, 2010, Alfonsi et al 2012), suggesting the isolation 

of the Iberian population that has been estimated to occur approximately 300 years ago 

(Fontaine et al 2010) during the “Little Ice Age”. In contrast, among the other populations of 

Northeast Atlantic, differences were not significant. 

Spain and Portugal had similar mitochondrial nucleotide diversity, though haplotype diversity 

was lower in Spain. Both mitochondrial DNA diversity measures were lower than in all the 

other populations except those in the eastern Mediterranean  

The most frequent haplotype found in the Iberian population (Hap_1) was also the most 

frequent in France (Alfonsi et al 2012). West Africa and South Portugal share one haplotype 

(Hap_6), which was not found in previous studies (Tolley and Rosel 2006).  These results may 

show the connection between those areas and reveal, especially for the population in West 

Africa, the need to increase the number of samples to increase our knowledge of the 

relationship between areas. 
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In the mismatch analyses, the raggedness index for Portugal was high and showed a 

multimodal distribution, but it was not significantly different from expectations for a 

population that has been growing. The same was true for Spain.  

A primary objective of this study was to provide more resolution on population structure 

among Iberian harbour porpoise populations. It was found that there was no significant 

pattern of population genetic structure in harbour porpoises along the Iberian Peninsula coast. 

This result is different to those found for other species present in the Atlantic Iberian 

peninsula, such as the bottlenose dolphin (Fernández et al 2011) which shows a strong genetic 

differentiation between southern Galician dolphins and animals from neighbouring locations 

that have been recently defined as another management unit (Fernández et al 2011, ICES 

2014).  

Despite female philopatry having been detected for this species in previous population genetic 

studies for certain areas (Wang et al 1996, Tiedemann et al 1996, Andersen et al 1997, 2001, 

Walton 1997, Rosel et al 1999 b, Tolley et al 1999, Wiemann et al 2010), no significant 

differences were found between patterns of genetic structure derived from males and females 

across Spain and Portugal. That said there were some differences in nucleotide and haplotype 

diversity, with Portuguese individuals being more diverse than Spanish.  

There are several processes that may explain the genetic differences of porpoises from the 

Iberian Peninsula and North West Africa from more northerly populations. Levels of 

divergence clearly cannot be explained by isolation by distance but instead are likely to be 

associated with population separation based upon oceanographic differences in relation to sea 

surface temperature, chlorophyll concentration, salinity, water turbidity, ocean currents, 

depth, slope or upwelling areas (Hoelzel et al 1998, Fullard et al 2000, Natoli et al 2005, Möller 

et al 2007, 2011, Bilgmann et al 2007, Stockin et al 2013, Richards et al 2013, Gaspari et al 

2013). This correlation between genetic distance and environmental differences was defined 

as “Isolation by Environmental Distance” (IBED, Mendez et al 2010) and was previously 

described for the franciscana (Pontoporia blainvillen, Mendez et al 2010), the humpback 

dolphin (Sousa chinensis, Mendez et al 2011) and the Indo-Pacific bottlenose dolphin (Tursiops 

aduncus, Ansmann et al 2012). 

The existence of upwelling conditions in West Iberia and North West Africa increases the 

productivity of the area, hence presumably enhancing prey abundance thus providing suitable 

conditions for porpoises (e.g. Fraga 1981, Figueiras et al 2002, Fontaine et al 2007, 2014, 
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Alfonsi et al 2012, Chapters 3 and 4). In the north of the range of the Iberian population, in the 

Bay of Biscay, strong barriers to gene flow were detected between this population and 

populations of the rest of North Europe, that coincide with profound differences in 

environmental characteristics. The warmer and deeper waters in the Bay of Biscay make this 

area unfavourable for porpoises. The southern boundary may be due to historical isolation 

with the Black Sea as the Mediterranean Sea became warmer and oligotrophic after the Last 

Glacial Maximum (Tolley and Rosel 2006, Fontaine et al 2010).  

Oceanographic features themselves are not likely to affect the distribution of the cetaceans 

directly, but the most important factors in determining their occurrence and movements are 

thought to be the prey abundance and distribution (Hastie et al 2004), that have thermal and 

saline sensitivity (Fullard et al 2000, Jøgersen et al 2005). For harbour porpoise, the small size 

of which limits the amount of stored energy so that it can survive for only short periods 

without feeding (Kastelein et al 1997), a relatively continuous availability of the prey is 

important (MacLeod et al 2007). Therefore, the presence of a cold water species, such as 

harbour porpoise, in the Iberian Peninsula can be explained by the existence of the upwelling 

along the Iberian coast, with cold and highly productive waters (Fiùza 1983, Fraga 1981, Ambar 

and Fiùza 1994, Figueiras et al 2002), that increases the presence of porpoise prey and allows 

them to persist south of the Bay of Biscay (OSPAR 2000) and which can influence their genetic 

structuring. 

The last group of populations differentiated using Structure was the one of North Europe 

(France, Belgium, Ireland, England and Scotland), which were not significantly different for 

microsatellite loci, and had similar levels of allelic richness, with the highest allelic richness 

found in Ireland. This is consistent with Fontaine et al (2007) and Alfonsi et al (2012). 

Heterozygosity values for Scotland and England were higher than those found previously 

(Andersen et al 2001, Fontaine et al 2007).  

Estimates of genetic diversity for the mitochondrial control region showed an east-west trend 

with highest values found for West Greenland and Iceland which is in accordance with 

previous studies (Rosel et al 1999 a,b, Tolley et al 2001). 

West Greenland and Iceland populations were shown to be significantly different to the 

populations of the Northeast Atlantic and there were no significant differences between them. 
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In the present study all populations analysed were significantly less diverse than those in the 

Western North Atlantic, supporting previous comparisons of these areas (Tiedemann et al 

1996, Wang et al 1996, Rosel et al 1999 a, b, Tolley et al 2001), and Atlantic porpoises are also 

less diverse than the Pacific ones (Rosel et al 1995).  

The Northeast Atlantic and Iceland showed the mismatch distributions expected under 

expansion. However, West Greenland is better described as a population that has been 

stationary for a long time. 

Overall the genetic data suggest that the Iberian Peninsula and West Africa must be 

considered as one unique population. It is a distinct genetic grouping that would be consistent 

with the assertion (Fontaine et al 2014) that they should be described as a separate 

subspecies, Phocoena phocoena meridionalis. The recognition of this isolated population is 

essential to assess threats that can affect them, such as by-catch in commercial fisheries 

(Jefferson and Curry 1994, Read 1994, Donovan and Bjorge 1995, Berggren et al 2002, Stenson 

2003, Read 2013). Furthermore, it is the basis for the creation of specific management plans 

and the definition of SACs as required by the EU Habitats Directive. 

Given the extent of genetic structure driven by ongoing ecological processes, it would be 

interesting to examine whether there are equivalent differences in ecological tracers (e.g. 

stable isotopes and fatty acid profiles, levels of contaminants) which could reveal how genetic 

divergence equates to ecological separation. It would also be interesting to provide a genome-

wide pattern of genetic divergence across populations to examine the extent to which 

ecological divergence drives adaptive genetic differentiation as well as neutral divergence. 
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CHAPTER III  

Modelling harbour porpoise habitat preferences along the 

Galician coast from boat survey data 
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Abstract 

Distribution, abundance and population dynamics of cetaceans are considered as indicators of 

Good Environmental State of the EU’s marine waters under the Marine Strategy Framework 

Directive. Spain, like several other Member States, has proposed indicators based on small 

cetacean abundance, distribution and bycatch, for several species including porpoises. Thus 

the understanding of porpoise distribution is a key requirement. 

In this study cetacean habitat modelling was used as it represents a potentially powerful tool 

for predicting cetacean distributions and understanding the ecological processes determining 

these distributions. Targeted boat surveys were carried out in Galician coastal waters during 

the years 2003 - 2010. Results showed that the detection of porpoises was influenced by sea 

state, the detection of porpoises decreasing with values of Douglas greater than 2. The best 

boat speed for monitoring harbour porpoises is around 6 knots and the probability of 

detecting harbour porpoises increases with field-of-view width. There was also interannual 

variation with a significant increase in the number of sightings in 2005 and no detections in 

2006. In contrast, no significant differences in porpoise presence were seen between months 

or in relation to depth. Several environmental variables were found to be important to explain 

the presence of porpoises. Porpoises were mostly seen in waters with medium temperatures. 

As chlorophyll concentration and the depth of the eutrophic zone increase there was an 

increase in porpoise presence. Finally there were positive relationships between number of 

sightings and both seabed slope and its facing to the South. 

Results show that porpoises are likely related to areas with conditions of high productivity, 

which will ultimately affect the higher trophic levels through food chain-related processes, and 

may be good for the development and aggregation of the most important prey of harbour 

porpoises in Galicia such as blue whiting, Trisopterus spp, silvery pout (Gadiculus argenteus) 

and Trachurus sp. Then porpoise distribution is likely to reflect foraging opportunities. This is 

important as, by remaining close to food resources, porpoises are able to meet the energetic 

demands of maintenance, growth and reproduction.  

Knowledge of the environmental conditions and areas in which porpoises were seen with 

higher probability can help define suitable areas for their conservation. While the association 

with high productivity may help to define preferred areas, in a mobile species it is also 

essential to take into account variation in distribution, not only seasonally but from year to 

year. 
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Introduction 

Spain is one of the countries of the Europe with highest marine biodiversity (IUCN1, 

Convention on Biological Diversity2); it has more than 8000 km of coastline, along which 

around 58% of the human population is located. Galicia is the region of Spain with the second 

longest coastline (1195 km) with 78% of the population located at the coast (Aguas de Galicia. 

Xunta de Galicia3). It is the main fishing region of Spain and one of the most important in the 

world, with 87 fishing ports and more than 4843 fishing boats (Spanish Ministry of Agriculture 

and Environment 2013); most of them are small boats working in inshore waters using traps, 

trawls, gillnets and longlines to target molluscs and crustaceans. Around 2000 boats work in 

offshore (littoral) waters; longlines, trawls and gillnets are used to take species such as hake 

(Merluccius merluccius), blue whiting (Micromesistius poutassou), scad (Trachurus trachurus) 

and monkfish (Lophius piscatorius, L. budegassa), while purse seiners target sardine (Sardina 

pilchardus), scad and anchovy (Engraulis encrasicholus). 

Galician waters also have an important community of cetaceans with 22 species (Covelo et al 

2009), including the harbour porpoise. The population of this species in the Iberian Peninsula 

has been described as genetically isolated from the rest of the North East Atlantic (Fontaine et 

al 2007, 2014, see also Chapter II).  This species is known to be present all year round (López et 

al 2002, López 2003, Pierce et al 2010). Hammond et al (2013) estimated the abundance of this 

species in shelf waters from SW France, along the Atlantic coast of Spain and Portugal to the 

Strait of Gibraltar to be 974 (CV 0.84) individuals. Abundance in Galicia and Cantabria has been 

estimated as 683 porpoises (CV 0.63; López et al 2013), and the Galician population had been 

previously estimated to be of 386 (CV 0.71) individuals (López et al 2012). 

Porpoises are mainly piscivorous, and in Galician waters they feed mainly on blue whiting 

(Micromesistius poutassou) and Trachurus spp (Pierce et al 2010, Santos unpublished data). 

Santos et al (2014) estimated a food daily consumption per individual of 1.96 kg, representing 

4.44% of the body weight of an average porpoise at Galicia, implying that the resident 

population could take 509 tonnes of fish annually. 

The harbour porpoise is designated as ”vulnerable” in Spain (Catálogo Nacional de Especies 

Amenazadas, Law 4/1989, 2000) and is included in Annex-II of the Habitats Directive, thus 

requiring the designation of Special Areas of Conservation (SACs) by EU Member States in 

                                                           
1
 http://iucn.org/about/union/secretariat/offices/europe/resources/country_focus/spain/ 

2
 https://www.cbd.int/countries/profile/default.shtml?country=es#facts 

3
 http://augasdegalicia.xunta.es/es/4.1.htm 

http://iucn.org/about/union/secretariat/offices/europe/resources/country_focus/spain/
https://www.cbd.int/countries/profile/default.shtml?country=es#facts
http://augasdegalicia.xunta.es/es/4.1.htm
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whose waters the species occurs. The study of its populations is a priority issue and IWC 

(International Whaling Commission) and ICES (International Council for the Exploration of the 

Sea) recommended studies to determine the population structure of this species and develop 

an appropriate management plan (IWC 1998) in order to reduce negative impacts on their 

populations. See Chapter I and II, and Fontaine et al (2007, 2010, 2014) for further discussion 

of stock structure for this species in European seas. 

Anthropogenic threats on the health of the marine environment and its natural resources grow 

year by year (European Commission 2014), including underwater noise, pollution, shipping, 

offshore development and fishery bycatch. 

Incidental by-catch in commercial fisheries is considered as the main threat for cetaceans 

worldwide, including harbour porpoise (Jefferson and Curry 1994, Read 1994, Donovan and 

Bjorge 1995, Berggren et al 2002, Stenson 2003, Siebert et al 2006). Due to the high fishing 

activity in Galicia a high number of by-catches is likely in the area.  By-catch rates in Galician 

waters have been estimated from stranding data (López et al 2003, López et al 2012, Read et al 

2012), observer trips on fishing vessels (López et al 2003), and interviews with fishermen 

(López et al 2003, Goetz et al 2014), and all these sources of information, except the observer 

trips, suggest that the overall cetacean by-catch rate is unsustainably high. Common dolphins 

are apparently frequently caught in gillnets in Galicia (López et al 2003), and data from 

strandings showed that 23% of the dolphins were fishery by-catches (López et al 2002). It was 

confirmed or diagnosed as the cause of death in between 14% (bottlenose dolphin) and 29% 

(Risso’s dolphin) of the strandings of the most frequent species recorded (López et al 2002). 

Slightly over 40% of porpoise strandings in Galicia have indications of by-catch (Read et al 

2012), although, together with pilot whale and striped dolphin, harbour porpoise represented 

only 5.1% of the total cetacean bycatch reported during interviews with fishers (Goetz et al 

2014). It has been estimated that the incidental by-catch of porpoises in Galicia (around 49 

animals annually) exceeds the 1.7% of the population annually (López et al 2012, Read et al 

2012), a limit considered as an unacceptable interaction by ASCOBANS (1997). 

The high incidence of by-catch, in addition to other potential anthropogenic threats such as 

pollution, overfishing and disturbance suggest that there is a need to develop conservation 

management plans for Iberian harbour porpoise, and indeed this has already been recognised 

by the Galician government. Several biological issues should ideally be addressed prior to 

conservation management plan design, particularly when focusing on a possibly endangered 
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species or population. In fact, it is necessary to define species distribution, abundance, genetic 

status and threats (Stenson 2003). 

Two EU Directives are especially relevant to porpoise conservation. The Habitats Directive 

requires the creation of SACs for harbour porpoises, as mentioned above. The general aim of 

SACs is the maintenance or restoration, to a favourable conservation status, of the natural 

habitats and/or the populations of the species for which the site is designated. In addition the 

Habitats Directive prohibits deterioration or destruction of breeding sites or resting places 

(Article 12), and requires avoidance of their disturbance (Article 6) particularly during the 

period of breeding and migration (Article 12) for all species listed in Appendices II and IV of the 

Directive. At present, Spain has not designated any SACs for porpoises. In order to identify 

suitable sites, we need to understand distribution, movements and habitat use by porpoises, in 

particular to identify “hot spots” that are regularly used by the species and/or are important 

for foraging, rearing calves, etc. 

Under the Marine Strategy Framework Directive (MSFD), as is also the case for many other 

marine taxa, aspects of the distribution, abundance and population dynamics of cetaceans are 

considered as indicators of Good Environmental State (GES) of the EU’s marine waters. Spain, 

like several other Member States, has proposed indicators based on small cetacean 

abundance, distribution and bycatch, for several species including porpoises (VV.AA. 2014). In 

addition, the MSFD requires coordination of monitoring at regional seas level and the above-

mentioned indicators have all been proposed as Common Indicators for the OSPAR region. 

Thus the understanding of porpoise distribution is a key requirement to allow assessment of 

environmental status and to determine if the effort carried out to achieve GES by 2020 

through management measures, as required by the Marine Directive, has been successful or 

not. 

Cetacean–habitat modelling represents a potentially powerful tool for predicting cetacean 

distributions and understanding the ecological processes determining these distributions. It 

has already been used to incorporate this variability into management applications, including 

improvement of abundance estimates, development of marine protected areas, and 

understanding cetacean–fisheries interactions (Redfern et al 2006). Cetacean data used in 

habitat modelling may come from both dedicated and opportunistic studies including ship, 

aerial, and acoustic surveys, as well as individual tagging studies (Redfern et al 2006). 
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Since 1990 the NGO CEMMA (Coordinadora para o Estudo dos Mamíferos MAriños) has 

studied marine mammals and sea turtles in Galicia and, since 2003, targeted boat surveys have 

been carried out in Galician coastal waters. Data recorded during these surveys, during the 

years 2003 - 2010, are used for this study to describe and model i) spatial and ii) temporal 

trends in harbour porpoise distribution in the study area, and iii) compare its distribution with 

those of the other resident species present in Galician coastal waters, such as the bottlenose 

dolphin); iv) quantify the factors that affect the observers’ capacity to detect porpoises during 

boat surveys; and v) study the environmental characteristics of the habitat that determine the 

presence of harbour porpoises at the study area and compare it with previous studies of the 

habitat use by cetaceans of that area (Fernández 2010, Pierce et al 2010, Spyrakos et al 2011, 

Méndez-Fernandez et al 2013; Fernández et al 2013). 

The present study will provide essential data on the harbour porpoise to improve knowledge 

of distribution and ecology of the species in Galician waters, to permit the development of an 

adequate management plan, and to provide baseline data for the comparison of its situation 

with future work on the species that will help us to determine whether GES has been reached 

by 2020 at Galician waters as required by EU regulations. 
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Materials and methods  

Study area. 

The study area is the Galician coast in the northwest Iberian Peninsula (Fig. 15). The coastline 

(1195 Km) features cliffs, sandy beaches, and a series of “rías”, which are flooded tectonic 

valleys of moderate depth. The continental shelf of Galicia is narrow (20 - 35 km wide) and the 

coast is influenced by northerly winds during spring and summer, which produce a seasonal 

upwelling near the coast that influences the entire shelf area (Fraga 1981), and a southward 

surface current. This oceanographic feature makes the northwest Iberian Peninsula an area of 

high biodiversity with an elevated number of cetacean species and it is one of the most 

important fishing areas of the world (Covelo et al 2009, Spanish Ministry of Agriculture and 

Environment, 2013). 

 

Figure 15. Study area. 
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Survey design and data collection. 

From 2003 to 2010 systematic cetacean surveys were carried out along Galician coast from 

March to October. The number and distribution of surveys varied between years because of 

their dependence on different projects. Also, several vessels were used but most of the 

surveys were conducted using the Nauja, a motor-sailing vessel of 21 m length (n=84 surveys). 

The other vessels used were the Íbero, a 16 m motor-sailing vessel (n=24), the 16 m motor-

sailing vessel Black Knight (n=1), the 32 m motor-sailing vessel Nieves (n=4), the 33 m long-

liner Santiago Apóstolo (n=5), the 30 m long-liner Anxuela (n=2) and the 5.25 m motorboat 

Elda dos (n=1). 

A survey was considered as the part of each trip during which observations took place. 

Transects did not follow a systematic design but they aimed to cover the area as evenly as 

possible within constraints due to weather conditions and location of ports. In particular, 

because the distribution of cetaceans is known to be related with depth (e.g. Hooker et al 

1999, Carretta et al 2001, Cañadas et al 2003, Santora 2012), surveys aimed to cover the full 

range of depths over the continental shelf and slope. Although exact depth was used in the 

modelling, depth was also classified as “inside rías”, “less than 100 m” (outside the rías), “100 

– 200 m” and “more than 200 m” to use in some other analyses. Transects were designed to 

cross the isobaths perpendicularly and to go as far as possible from the coastline depending on 

the number of hours available for sampling in each survey. Because the two main ports were 

located inside the Rías of Arousa or Vigo, the area from the port to the limit of the ría was 

surveyed more often. Average travel speed was around 6.4 knots (CV 0.23). 

In 2008 an additional project to monitor cetaceans in Galician coastal waters (“A favor del Mar: 

la ruta del Íbero 2008” funded by Fundación La Caixa) was carried out, so there was more 

effort in shallower waters than during the other years of study. 

A minimum of 3 observers searched for cetaceans using binoculars or by naked eye, at 

different heights depending on the boat (from 2 m to 8 m above sea level): one of the 

observers was on the starboard side, searching a sector from 350° to 90°, another one on the 

port side, searching a sector from 270° to 10°, and in the case of the Santiago Apóstolo and the 

Anxuela a third observer was at the bow searching a sector from 270° to 90°. Depending on 

the number of observers present during each survey, the number of teams varied. At least one 

person per team was an observer with experience in cetacean observation. 
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Each survey was divided into 1 hour periods. If the number of observers was sufficient to 

establish several teams, each one worked 1 hour and rested until the next working period. If 

there were not enough observers, observation periods could last several hours, with rest 

breaks so that observation was not continuous and the duration of the observation periods 

varied depending on the survey. 

Another person recorded, each 20 min, general data such as hour, vessel location, speed, 

direction and number and identity of observers working, and environmental data such as 

depth, Beaufort and wind direction, Douglas, swell height, visibility and (estimated) visible 

track width. Additional data were recorded if one of these variables changed significantly 

within the period of 20 min interval. The tracks were recorded in real time on a computer 

using the program OziExplorer (http://www.oziexplorer.com/). 

A sighting consisted of the detection of one or more cetaceans. When there was doubt about 

the identification of the species or even the sighting itself, the observers checked it with 

binoculars. For each sighting, data were recorded as follows: time, boat position, angle from 

the bow, distance from the boat to the animals, species, group size estimates, environmental 

data, and behaviour of the cetaceans (swimming (direction of travelling), resting, feeding, 

jumping, interactions with conspecifics (described), interactions with other species or boats). 

Two types of sightings were differentiated: 1) systematic, when cetaceans were detected by 

the observers during observation time, 2) opportunistic, when animals were detected by 

persons who were not in the working team. The surveys also carried out photo-ID work on 

bottlenose dolphins. When this species was observed and weather conditions were suitable, 

the observation effort was suspended while photographs were taken. 

All this information was recorded on standardized forms, and then transferred to computer. All 

the locations recorded by hand were mapped to detect and correct possible errors. 

Environmental  data. 

A number of potential explanatory variables were considered for the analysis of habitat use. 

These were: latitude, longitude, sea surface temperature (SST), chlorophyll concentration 

(CHL), depth of the euphotic zone (ZEU), photosynthetically active radiation (PAR), depth 

(DEP), seabed slope (DEP_SL), seabed aspect (DEP-AS), and their standard deviations (SST-STD, 

CHL-STD, ZEU-STD, PAR-STD, DEP-STD, DEP_SL-STD, DEP-AS-STD).  

http://www.oziexplorer.com/
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The study area is well monitored in terms of monthly satellite imagery. MODISA (Moderate 

Resolution Imaging Spectroradiometer Aqua at 4 km spatial resolution Level-3 datasets) sea 

surface temperature distribution (SST in oC), sea surface chlorophyll concentration (CHL in 

mg/m3), photosynthetically active radiation (PAR in Einstein/m2/day), and euphotic depth (ZEU 

in meters) were downloaded through Oceancolor Web, NASA's online Distributed Active 

Archive Center. These monthly satellite datasets were downloaded in HDF (Hierarchical Data 

Format) and converted to ArcGIS grids through specific routines developed in AML (Arc Macro 

Language) for the workstation version of ArcGIS (ArcInfo). Bathymetry (DEP in meters at 800 m 

spatial resolution) was downloaded from GEBCO_08 (General Bathymetric Chart of the 

Oceans) and bathymetry slope (DEP_SLO) and aspect (ASP) were calculated in radians by 

applying the corresponding Z factor for the average latitude of the study area.  

Mean environmental and bathymetry parameters were calculated for each sampling point 

using a buffer zone of 20 km around each point. The procedure was carried out in the 

workstation version of ArcGIS using the grid zonal function 'zonalstats' for calculating mean 

and standard deviation (zonalstats function with the {moment} argument). 

Statistical analysis. 

To analyse the significance of the variation of the sighting rates between depths classes and 

years, and with group size, χ2 tests were carried out. 

Before the modelling, data exploration followed the Zuur et al (2010) eight-step protocol  (1- 

detection of outliers in response (Y) and explanatory (X) variables; 2- study the homogeneity of 

y; 3- study the normality of y; 4- investigate “zero trouble” (i.e zero inflation) in Y; 5- study the 

collinearity of different X; 6- study the relationship between Y and X; 7- search for interactions; 

and 8- study the independence of Y (i.e., autocorrelation)). 

To follow these steps, boxplots, conditional boxplot and Cleveland dotplot / Dotcharts were 

created and correlations and Variance Inflation Factors (VIF) were calculated. When the 

response variables were binomial, no histograms or QQ plots were plotted. The result was that 

some variables needed to be removed (bearing, SST-STD, CHL-STD, DEP-STD and DEP_SL-STD) 

although none needed to be transformed (except in the case of wind direction, which is a 

circular variable and was split into north-south and east-west components). 
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Three response variables were defined: harbour porpoise presence, number of groups and 

presence of calves. Finally only the first one was studied because most of the sightings were 

only of one group of porpoises and there were very few sightings with calves. 

The model selection was carried out in three-steps: 

1- model the covariates affecting the observer; 

2– model the spatiotemporal trends in sightings;  

3– model the environmental effects that may affect the presence absence of harbour 

porpoises. For the first step the covariates studied were: boat speed, Beaufort and wind 

direction, Douglas sea state scale, visibility, swell height, visible width (Width_Field) and boat 

identity (the latter accounting for differences in platform height, etc). The wind direction was 

transformed to degrees, then to radians and finally to sine and cosine (Sin(WRad), Cos(WRad)), 

to have the northing and easting components.  In this case when there was no wind Sin(WRad) 

and Cos(WRad) were considered as not available (NA). The final best model was then used as a 

“base model” for the next steps. In the second one the variables included were year, month, 

latitude and longitude (degrees). Finally, in the third step instead of year, month and location, 

the covariates studied were the environmental data: SST, SST-STD, CHL, CHL-STD, ZEU, ZEU-

STD, PAR, PAR-STD, DEP, DEP-STD, DEP_SL, DEP_SL-STD, DEP-AS, DEP-AS-STD. The last of these 

(i.e. DEP-AS and DE-AS-STD) were also transformed to sin and cosine (DEP-AS-sin, DEP-AS-cos).  

Generalised additive models (GAMs) were used to relate presence of harbour porpoises and 

explanatory variables as they permit non-normal distributions of response variables, and non-

linear relationships between continuous covariates and the response variable, which are 

described with non-linear smooth functions (Hastie and Tibshirani 1990). As such they are 

suitable to capture non-linear cetacean-habitat relationships (Redfern et al 2006). GAMs can 

be used if the response variable is binary, discrete or continuous. In this case, the response 

variable harbour porpoises sighting was presence/absence data, the distribution selected was 

binomial and a logit link function was used. Covariates were used as smoothers with k = 3 for 

covariates affecting the observers (because variables like visibility are measured on a short 

ordinal scale), k= 4 for environmental covariates and k = 5 for year as the relationship was not 

expected to be very simple and there are 8 years of data; only the boat identity variable was 

nominal. The purpose of limiting k is two-fold. Firstly, for variables with few unique values (e.g. 

Beaufort) it permits a smooth curve to be fitted. For environmental variables it is a means of 

avoiding overfitting, or fitting unrealistically complex relationships (Zuur et al 2007).  
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For the model selection, firstly all covariates were studied one by one. The best single 

explanatory variable model was selected and new models were investigated by adding each 

remaining covariate one by one to obtain the best model with two explanatory variables. This 

process continued until the best model was found. If, at some of the steps, there were several 

good models, the process was followed independently from each of these candidate models. 

The main criterion for the model selection followed was the Akaike’s Information Criterion 

(AIC) which measure the goodness of fit and the number of parameters in the model (Zuur et 

al 2007), and the deviance explained by the explanatory variables of the model. In addition, 

where the AIC was uninformative about whether it was necessary to add an additional variable 

(e.g. AIC values differed by less than 2), F tests were used to compare nested models. If several 

models were found to be final best models, they were all selected. 

For the validation of the final model, plots of the residuals versus fitted values to confirm 

homogeneity of variance, were used. 

All these analyses were carried out using the software R.2.11.1 and Brodgar 2.7.2 (Highland 

Statistics Ltd). 
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Results 

Boat survey effort and sightings. 

A total of 111 boat surveys was carried out from 2003 to 2010 and from March to October in 

Galician waters (Fig. 16), corresponding to 843.7 h and 9680.4 km of effort, and a total of 359 

cetacean sightings was recorded (Table 12). 

 

Figure 16. Boat surveys along the Galician coast from 2003 to 2010. 

Due to economic issues and the dependence of different projects, the number and distribution 

of surveys varied between years. The km and km2 covered, nº of sightings (total and of harbour 

porpoises), hours of sightings (total and of harbour porpoises), and total and per year 

encounter rates are shown in Table 12. 

The year with most surveys (N=23) was 2008 (when an additional project was running, see 

methods), and the year with fewest was 2010 (N=8). Survey effort (Table 12) was highest in 

2007 and 2008, and was lowest in 2010. 
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Year Nº Surveys Effort Km Km2 Effort h 
Nº Total 

sightings 

PPH 

sightings 
Sightings h 

Sightings 

PPH h 
ERh ERh PPH ERkm ERkm PPH 

2003 13 982.2 1384.7 98.4 35 1 11.19 0.03 0.36 0.01 0.04 0.001 

2004 12 1097.0 1630.0 95.3 56 6 16.26 0.67 0.59 0.06 0.05 0.005 

2005 17 1583.1 2370.8 151.4 67 13 27.00 1.17 0.44 0.09 0.04 0.008 

2006 9 1003.6 1001.9 78.9 33 0 3.55 0 0.42 - 0.03 - 

2007 17 1621.4 2387.7 132.0 51 4 9.07 0.12 0.37 0.03 0.03 0.002 

2008 23 1594.9 1967.1 140.9 68 4 14.50 0.22 0.48 0.03 0.04 0.003 

2009 12 1040.2 1640.3 85.0 26 1 4.48 0.05 0.31 0.01 0.02 0.001 

2010 8 758 1360.5 56.8 23 2 5.60 0.13 0.41 0.04 0.03 0.003 

TOTAL 111 9680.4 13743.0 843.7 359 30 91.66 2.38 0.43 0.04 0.04 0.003 

Table 12. Number of surveys, total km of effort, Km2 covered, total hours of effort, total hours of sighting, total hours of sightings of harbour porpoises, total 

number of sightings, number of harbour porpoise sightings, and encounter rates (per hour ERh, and kilometres ERkm) calculated per year and in total.
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Two home ports (O Grove and Vigo) were used for most of the surveys, and areas closer to 

these ports were better surveyed, especially in years with more surveys. The distribution of 

effort by depth class was also different each year. The proportion of survey time spent “inside 

rías” was highest  in 2003 (around 50%; Fig. 17 a); 2006 was the year with the highest 

proportion of time spent at “more than 200 m”, while in 2008 the survey extended along the 

whole Galician coast and the proportion of time spent at “less than 100 m” was higher than in 

the other years. 

 

 

Figure 17. Distribution of the depth classes a) for the survey effort per year, b) for sightings of 

harbour porpoises (black) and bottlenose dolphins (white), and c) for sightings of harbour 

porpoises and bottlenose dolphins corrected by effort (km) multiplied by 100. L.R. limit of Rías, 

I.R. Inside Rías. 

For all cetacean species, the years with most sightings were 2005 and 2008 (67 and 68 

sightings respectively), while in 2010 only 23 sightings were recorded. The encounter rate (per 

hour and km surveyed) was highest in 2008 and lowest in 2007. 

The most commonly recorded species of cetacean were common dolphin (Delphinus delphis) 

(53.3% of sightings), bottlenose dolphin (Tursiops truncatus) (16.1%) and harbour porpoise 

(Phocoena phocoena) (8.6%). Other species observed were long-finned pilot whales 

(Globicephala melas), Risso’s dolphin (Grampus griseus), striped dolphin (Stenella 

a) 

b) c) 
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coeruleoalba), minke whale (Balaenoptera acutorostrata) and fin whale (Balaenoptera 

physalus) (Table 13a). The order of importance of the species does not change when expressed 

as sightings per hour of effort (Table 13 b). 

a) 

SPECIES 2003 2004 2005 2006 2007 2008 2009 2010 TOTAL 
% 

TOTAL 

Delphinus delphis 18 32 39 13 23 43 11 16 195 54.32 

Tursiops truncatus 12 6 4 6 10 12 4 1 55 15.32 

Phocoena phocoena 1 6 13 0 4 4 1 2 31 8.63 

Globicephala melas 0 1 5 1 3 0 1 0 11 3.06 

Grampus griseus 0 2 0 2 1 1 3 0 9 2.51 

Balaenoptera acutorostrata 0 0 1 1 2 1 3 1 9 2.51 

Balaenoptera physalus 0 0 0 3 1 0 0 0 4 1.11 

Stenella coeruleoalba 0 0 0 1 0 0 0 0 1 0.28 

Unidentified odontocetes 4 8 4 4 4 7 3 3 37 10.31 

Unidentified mysticetes 0 1 1 2 3 0 0 0 7 1.95 

TOTAL 35 56 67 33 51 68 26 23 359 100 

b) 

SPECIES 2003 2004 2005 2006 2007 2008 2009 2010 Average 

Delphinus delphis 0.183 0.126 0.258 0.165 0.061 0.305 0.129 0.282 0.228 

Tursiops truncatus 0.122 0.024 0.026 0.076 0.027 0.085 0.047 0.018 0.064 

Phocoena phocoena 0.010 0.024 0.086 0 0.011 0.028 0.012 0.035 0.033 

Globicephala melas 0 0.004 0.033 0.013 0.008 0 0.012 0 0.011 

Grampus griseus 0 0.008 0 0.025 0.003 0.01 0.035 0 0.012 

Balaenoptera 

acutorostrata 
0 0 0.007 0.013 0.005 0.01 0.035 0.018 0.012 

Balaenoptera physalus 0 0 0 0.038 0.003 0 0 0 0.006 

Stenella coeruleoalba 0 0 0 0.013 0 0 0 0 0.002 

Unidentified odontocetes 0.041 0.031 0.026 0.051 0.011 0.050 0.035 0.053 0.046 

Unidentified mysticetes 0 0.004 0.007 0.025 0.008 0 0 0 0.008 

TOTAL 0.356 0.220 0.442 0.418 0.136 0.483 0.306 0.405 0.421 

Table 13. Number of sightings per year and species, a) in total and b) per hours of effort. 
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The years in which the highest number of species (7) was seen were 2006 and 2007, while in 

2003 only 3 species were identified. Common dolphin and bottlenose dolphins were seen in all 

years; striped dolphin was seen only in 2006. 

Both the highest number of cetacean sightings and the highest encounter rate were recorded 

in 2008. Fewest sightings were seen in 2010 although the lowest sightings rate was in 2007. 

Breaking down observations into 20 minute periods, only fin whale was never seen during the 

same period as other species, and porpoises were only once detected with unidentified 

odontocetes during the same period. In the only sighting of striped dolphins, common dolphins 

and unidentified odontocetes were also seen. 

For this study we are going to focus on harbour porpoise sightings. 

A total of 30 sightings of harbour porpoises was recorded, with a total sightings duration of 

2.38 hours (Table 12). They were seen at less than 100 m depth (outside the Rías) and between 

100 - 200 m (Fig. 17 b and 18 a). The year with most porpoise sightings was 2005, while no 

porpoises were registered at 2006. Porpoise encounter rate (per hour) was the third highest 

after the common and bottlenose dolphin (Table 13 b). Encounter rate for porpoises was 

highest in 2005. 
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Figure 18. Representation of the sightings recorded on boat surveys from 2003 to 2010 for a) 

harbour porpoise sightings and b) bottlenose dolphin sightings. 

a) 

b) 
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Porpoise sightings per year do not follow the same pattern as sightings of all species (Table 12, 

Fig. 19 a): while 2008 was the year with most cetacean sightings and 2010 the year with least, 

porpoises were seen more often in 2005 and none were seen in 2006. Over the course of the 

year most porpoise sightings were recorded in June, July, September (the month with the 

maximum number of sightings) and October (Fig. 19 b). If the number of sightings is corrected 

by the number of hours of effort per year (Fig. 19 c), general tendencies are the same, but the 

peak in porpoise sightings in 2005 is smaller. In the case of the seasonal pattern, once effort is 

taken into account, the peak in September disappears, as this month had more effort than the 

rest, and peaks are now seen in June and October (Fig. 19 d). 

 

 

Figure 19. Number of sightings of harbour porpoise (black line) and bottlenose dolphin (dash 

line) per a) year, b) month, c) year and d) month corrected by effort (h). 

The number of porpoises per group each year was similar across the eight years of study (Fig. 

20 a) ranging from 1 to 4 individuals. To study the significance of the variation of the group size 

between years, it was necessary to define 3 groups of size classes: 1 or 2 individuals, 3 

individuals, and 4 to 6 individuals; it was also necessary to group the years two by two. The 

variation was not found to be significant (χ2= 7.56, d.f. 5). The number of groups of harbour 

porpoises with calves was very low and they were seen only in 2004 and 2008 (Fig. 20 b). As 

the number of sighting with calves was very low it could not be used as a response variable 

and therefore no modelling for calves was carried out. 

a) b) 

c) d) 
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Figure 20. Group size a) and percentage of sightings with calves b) of harbour porpoise (black 

line) and bottlenose dolphin (dash line) per year. 

Bottlenose dolphins are also present in coastal waters of Galicia. They were seen more often 

than porpoises (Table 13), with bigger group sizes, and more often with calves (Fig. 20 a, b). 

Porpoises were seen in deeper waters and not usually within the rías although this variation 

between depth zones in sighting rate of porpoises was not found to be significant (χ2 = 6.19, 

d.f. = 3) (Fig. 17 b, 18 b). .In contrast, bottlenose dolphins were seen mostly inside the rías 

although there are several records offshore, and the sighting rate differed significantly 

between depth classes (χ2 = 105.13, d.f. = 3, p<0.001). Bottlenose dolphins were seen in all the 

years of the study, with the highest number of sightings of this species in the first year with a 

second peak in 2006, when no porpoises were detected. While bottlenose dolphins were seen 

in all surveyed months but March, porpoises were not detected from March to May (Fig. 19 b, 

d) (there were no surveys during November to February). 

Models and selection criteria. 

Finally, from the three response variables defined (harbour porpoise presence, the group size 

and presence of calves) only the first one was analysed as most of the groups were of 1 

individual and therefore the information was the same as that provide by the presence 

response variable; and there were very few records of sightings with calves and when they 

were detected only one calf was present. 

At the data exploration stage, no outliers were detected, but some correlations between 

explanatory variables were detected. Due to collinearity several explanatory variables were 

dropped out: bearing, SST-STD, CHL-STD, DEP-STD and DEP_SL-STD. In most of these cases, 

means and standard deviations of variables tended to be correlated and we therefore retained 

mean values. 

a) b) 
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When modelling the effect of the environmental co-variables on the observers a total of 105 

different candidate models was fitted (Appendix VI). The final model (where Y = porpoise 

presence) was the one with lowest AIC value and highest percentage of deviance explained. 

This model includes 3 explanatory variables: 

 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) (AIC 279.06, Deviation 

Explained 13.3%). 

The model shows a linear increase of sightings of harbour porpoises as the field width 

increases (edf = 1, P < 0.001, Fig. 21). In relation to vessel speed, porpoises were more 

frequently seen when speed increased to 6 knots, after which sighting frequency decreased as 

the speed increased (edf = 2.45, P < 0.001). There is a clear negative effect of wind strength, 

especially at Douglas values greater than 2. 

 

Figure 21. GAM results: smoothers showing partial effects of environment on the observers. 

Covariates: a) field width (m), b) vessel speed (knots), c) Douglas. 

b) 

c) 

a) 
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To quantify the spatiotemporal trends in porpoise presence only one (full) model was fitted as 

all variables had a significant effect. 

Y~ 1 + s(Year, k = 5) + s(Width_Field, k = 3) + s(Speed) +  s(Douglas, k = 3) + s(Month, k 

= 4) + s(Long, Lat) (AIC 270.89, Deviation Explained 28.3%). 

 

 

 

Figure 22. GAM results: smoothers showing partial effects of space and time. Covariates: a) 

year, b) month, c) latitude and longitude. 

a) 

d) c) 

b) 
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There is a significant year to year variation with a peak in 2005, although since 2007 the trend 

is not clear as the confidence intervals were wide (edf = 3.26, P < 0.001; Fig. 22 a). A positive 

trend was found in the sightings over the course of a year (edf = 1, P < 0.001; Fig. 22 b). The 

spatial effect on sightings when fitting latitude and longitude with an interaction (i.e. as a 2-

dimensional smoother; Fig. 22 c, d) showed that there was a lower probability of detecting 

porpoises on the North coast of Galicia than on the South coast. 

Then GAM models were fitted with habitat covariates in addition to the above variables. As 

the number of covariates was high, when a variable was not statistically significant it was 

dropped out. A total of 300 candidate models was fitted (Appendix VII y VIII); in this case there 

was not a unique best model and 3 models, where Y = porpoise presence, were selected (with 

very similar AIC):  

model 1: Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, 

k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 

4), 259.39 AIC, 25.6% of deviance explained; 

model 2: Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k 

= 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4), 259.6 AIC, 24.8% 

deviance explained; 

model 3: Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k 

= 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3), 259.9 AIC, 24% deviance explained. 

The partial effects of these covariates are shown in Fig. 23; all variables have a linear effect 

except CHL and SST. Slope is present in all 3 selected models, showing a linear increase of 

sightings with an increase of the slope (edf = 1, P< 0.0001, for all models; Fig. 23 a); the 

smoother shown in this figure is not informative at slope values of less than 1.4 radians as 

confidence limits are very wide, reflecting lack of data. More porpoises were seen in areas 

where the CHL concentrations were lower (edf1-2 = 2.03, edf3 = 1.99, P < 0.0001; Fig. 23 b, c), 

but above a value of 15  Chl-a mg/m³ the confidence limits are wide due to lack of data. There 

was a positive effect of increasing ZEU value (edf = 1, P < 0.0001, for all models; Fig. 23 d). The 

incidence of sightings was greater at medium SST (edf1 = 2.13, edf2-3 = 2.14, P < 0.0001; Fig. 23 

e, f). The probability of seeing porpoises is greater over seabeds facing South than over those 

facing North (DEP_ASP_cos, edf = 1, P < 0.001, for all models Fig. 23 g). In the first and second 

g) h) 
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models there is a linear positive effect of month, porpoises were seen more frequently in 

October than May, but this variable was not statistically significant in model three (edf = 1, P < 

0.0001; Fig. 23 h). There is a linear increase of sightings with increasing ZEU_STD, but it is only 

significant in the first model (edf = 1, P < 0.001; Fig. 23 i). 

 

 

Figure 23. GAM results: smoothers showing partial effects of habitat covariates. a) seabed  

slope (rad), b) Chl-a (mg/m2) for models 1 and 2, c) Chl-a (mg/m2) for model 3, d) euphotic 

depth (m), e) sea surface temperature (ºC) for model 1, f) sea surface temperature (ºC) for 

models 2 and 3, g) depth aspect easting (rad); h) month; i) Euphotic Depth standar deviation. 

 

 

 

c) 

a) 

d) 

b) 
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Figure 23 . Continued. 

 

 

e) f) 

i) 

g) h) 
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Discussion 

The identification of the factors affecting the detection of porpoises by observers is 

fundamental and needs to be kept in mind when studying the environmental conditions that 

determine the presence of porpoises in the area. So-called “false absences” are a problem for 

cetacean sightings surveys, especially for harbour porpoises that have small size, are often 

solitary and have a cryptic surfacing behaviour, although spending nearly half of their life at or 

near the surface (Westgate et al 1995). As was described before by other authors, in this study 

the detection of porpoises was influenced by sea state (Palka 1996, Evans and Hammond 2004, 

Weir et al 2007, Tynan et al 2005, Marubini et al 2009, Embling et al 2010, Pierce et al 2010, 

Booth et al 2013, Dolman et al 2013, de Boer et al 2014), and it was found that the probability 

of detection decreases with values of Douglas greater than 2. 

It was also found that the best boat speed for monitoring harbour porpoises is 6 knots. In 

other studies, in contrast, this variable was the only survey variable studied that did not have 

an effect on the sighting rates (Booth et at 2013) or was important but only for one year of 

study with a decrease of the detection rate for boat speed higher than 6 knots (Embling et al 

2010). Sometimes porpoises appear to change their trajectory to swim away from boats (pers. 

obs.), thus it could be expected that at lower speeds more porpoises can be detected, but 

lower speeds might also allow porpoises to detect the ship and its trajectory earlier, and then 

avoid it more easily. On the other hand, at faster speeds the probability of detecting porpoises 

decreases as they spend only a short time at the surface which makes them difficult to detect. 

However, it should be noted that in large-scale cetacean surveys like SCANS, avoidance of 

vessels by porpoises has not been considered to be an issue (see Hammond et al 2002, 2013). 

As was expected, the probability of detecting harbour porpoises increases with field width. The 

increase of the surface available to scan increases the probability of detect porpoises. However 

due to the difficulty to detect them, there is a distance from the boat at which this trend is no 

longer seen, for example, in Galicia it was calculated that only 45.8% on average of the 

porpoises were detected at 800 m from the boat (López et al 2012). 

During the surveys carried out in Galician coastal waters, several environmental variables were 

found to be important to explain the presence of porpoises. Porpoises were mostly seen in 

waters with medium temperatures (between 16 – 18°C), a normal situation during summer in 

Galicia (Fraga 1981, Triñanes et al 1993, www.meteogalicia.es) when the Eastern North 

Atlantic Central Water (ENACW), a salty subtropical water mass is upwelled. However, 
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porpoises are described to be present mainly in colder waters (e.g. between 5 - 14°C; Evans 

and Teilmann 2009). The importance for the Iberian harbour porpoises of the temperature 

found here suggests that they are sensitive to temperature variation. It was suggested that 

climate change can affect the distribution of cetaceans such as harbour porpoises because of 

the predicted increase of water temperatures that may cause the species be found out of its 

thermal limits and then they cannot survive (e.g MacLeod et al 2005, Learmonth et al 2006, 

Laidre et al 2008, MacLeod 2009, Lambert et al 2011, 2014), especially in areas of distribution 

at the limit of their tolerance range (MacLeod 2009, Lambert et al 2014). Increase in water 

temperature in Galicia, which is near the southern limit of harbour porpoise distribution, may 

thus be of particular concern. 

Other important variables were chlorophyll concentration and the depth of the eutrophic zone 

(depth where there is sufficient Photosynthetically Active Radiation (PAR) to support 

photosynthesis (Kirk 2011)), with an increase in porpoise presence as values of those variables 

increased. High chlorophyll conditions can be related to the upwelling conditions that are 

usual in the study area (e.g. Fraga 1981, Figueiras et al 2002, Álvarez et al 2005, 2010, 2012). 

The increase of nutrients in the water due to the upwelling of nutrient-rich waters leads to an 

increase in primary productivity and therefore the chlorophyll concentration.  This will affect 

the secondary productivity and will lead to a higher presence of porpoise prey in the area. 

Previous work in the same area found that porpoises were present at a wider range of CHL_a 

concentrations than other species during summer (Fernández et al 2013). Also porpoises were 

seen most frequently adjacent to the coast in less productive areas (Pierce et al 2010) which 

may be a consequence of preferred water temperature and depth of the species and possibly 

of avoiding bottlenose dolphins (which were found in the most productive coastal areas). In 

the present study, the positive relationship found is consistent with studies in other areas such 

as California (Tynan et al 2005), Bay of Fundy (Johnston et al 2005) and the North Sea (Gilles et 

al 2011).  The eutrophic zone has been used to describe the productivity of a water body; 

areas with larger eutrophic zones are more productive (Haande et al 2011, Jin et al 2011, 

Khanna et al 2009). Thus the results of the present study also suggest that porpoises were 

mostly detected in more productive areas. 

All models showed a positive relationship between porpoise presence and both seabed slope 

and its facing to the South. Seabed slope has been found to influence porpoise distribution 

before (Embling et al 2010, Isojunno et al 2012, Booth et al 2013). This could be due to the 

presence of a slope current which is stronger and more persistent than shelf currents and has 
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an onslope tendency in mid depths (Pingree and Le Cann 1989). This slope current is generated 

by the interaction of a meridional density gradient with the slope and wind forcing with a 

poleward flow in the western boundary region (Gil 2003) below the surface (Huthnance et al 

2002, Mason et al 2005) that in the Atlantic Iberian waters is favourable and increases the 

currents where sea bed faces the south and that often extends to the surface during winter, 

increasing the productivity of the area. In the study area, this current is known as the Iberian 

Poleward Current (IPC) (Peliz et al 2003) and the Portugal Coastal Counter Current (PCCC) 

(Ambar and Fiúza 1994). Often this poleward undercurrent causes the appearance of upwelling 

water, as happens in Galicia. The distance to the inshore edge of the upwelling front was one 

of the most important variables influencing the presence of porpoises in California (Tynan et al 

2005). In the Horns Reef area (eastern North Sea), upwelling was described as the most 

important habitat characteristic for the distribution of porpoises that alternate between two 

upwelling cells depending on the direction of the tidal currents (Skov and Thomsen 2008). 

Also, in the German Bight, porpoises preferred areas with stronger currents and concentrated 

in areas where fronts are likely (Gilles et al 2011). Peliz et al (2003) confirmed that the 

adjustment of a meridional density gradient to a meridional oriented slope is likely to be the 

central mechanism in the generation of IPC, that together with the topography creates surface 

features such as eddies along the slope. It has been found that total primary production 

related to the “Canary Eddy Corridor” may be as high as the total production of the northwest 

African upwelling system for the same latitude (Dower and Perry 2001) which may be 

important sources of food for another fish, marine mammal, cephalopods and birds.  

These results show that porpoises are likely related to areas with conditions of high 

productivity as was described before (e.g. Tynan et al 2005, Gilles et al 2011). These conditions 

will ultimately affect the higher trophic levels through food chain-related processes, and 

therefore highly productive areas of upwelling or eddies may be good for the development 

and aggregation of the most important prey of harbour porpoises in Galicia such as blue 

whiting, Trisopterus spp, silvery pout (Gadiculus argenteus) and Trachurus sp. (Pierce et al 

2010, Read et al 2012) that can be found on the continental slope (blue whiting) and the shelf 

waters (the other species). Remaining close to food resources, porpoises are able to meet the 

energetic demands of maintenance, growth and reproduction, which are relatively high, 

especially in the case of mature females which have the additional costs of pregnancy and 

lactation that increase energy demands and may happen at the same time (Brodie 1995, 

Kastelein et al 1997, Read and Westgate 1997, Read et al 1997, Koopman, 1998, Lockyer 2007, 

MacLeod et al 2007). Then their distribution is likely to reflect foraging opportunities. 
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There was also variation in the number of porpoise sightings with year and season. The 

interannual variation showed a significant increase in the number of sightings in 2005 and no 

detections in 2006. Results from land-based surveys in Galicia (Pierce et al 2010, Chapter III) 

showed also interannual variation, but with peaks in different years.  This variation in porpoise 

presence may be due to the survey of different areas (i.e. in relation to depth and proximity to 

the coast) with both techniques, so in some years porpoises could be closer to the coast so 

they will be detected better with coast surveys than boat surveys, and vice versa. Variation 

between years was also found in other areas of Europe, such as Scotland (Marubini et al 2009, 

Booth et al 2013) and the Baltic Sea (Benke et al 2014). Benke et al (2014) suggested that 

those differences in the Baltic Sea could rather indicate a change in site or habitat preference 

than a population increase. Similarly, in Galicia, it is unlikely that the changes in sightings rates 

from year to year reflect absolute abundance. It is possible that in Galicia the changes in 

porpoise distribution over the years reflect the use of different areas during the study period 

due to changes in prey distribution or abundance, or movement of porpoises from deeper to 

coastal waters between years.  

Seasonal variation has been documented with an increase in the number of sightings in 

summer also in other areas (Siebert et al 2006, Verfuβ et al 2007, Weir et al 2007, Gilles et al 

2011, Booth et al 2013, Benke et al 2014), maybe partly due to better weather conditions that 

make it easier to detect the porpoises. However there are also differences in the seasonal 

patterns in local abundance between areas. For example, in Scotland more porpoises were 

detected in summer (Booth et al 2013), in German North Sea in spring (Gilles et al 2009), the 

Netherlands in winter (Camphuysen 2004, 2011, Scheidat et al 2011) or within different areas 

of Ireland (Berrow et al 2014). The reasons for those differences between seasons are not 

clear. One explanation could be the differences in the distribution through the depth classes, 

with animals moving from deep to shallow waters and vice versa.  

In Galicia, there were no significant differences in porpoise presence between months or in 

relation to depth although porpoises were seen in deeper waters. Other possible reasons for 

the variation in the number of sightings of porpoises in the study area could include the 

reduction or movements of prey available for porpoises. In the study area, fish landings and 

recruitment in the Bay of Biscay and Atlantic Iberian waters did not show any evidence of 

reduced abundance during the study period for the species eaten by porpoises in the area 

(ICES 2012), although there could be differences on a more local scale.  
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The use of habitat modelling techniques gives the possibility to increase our knowledge of the 

porpoises of Galician waters. Then the environmental conditions and areas in which porpoises 

were seen with higher probability will be better known and suitable areas for their 

conservation can be established with more accuracy. The modification of those habitat 

conditions favourable for porpoises may affect the presence and survival of porpoises, so it will 

be necessary to detect and consider the most important threats in the conservation plan and 

the actions to maintain the porpoise population. 

While the association with high productivity may help to define preferred areas, in a mobile 

species it is also essential to take into account variation in distribution, not only seasonal but 

from year to year. For example, if the conservation objective is to establish protected areas it 

is necessary to be reasonably certain that porpoises will continue to use the same areas every 

year – and if this is not the case a more flexible system of spatial protection may be needed, 

one which can be adapted to changing distributions. 

In the current study the best models explain around 25% of the deviance (13% due to the 

variables that affect the observers and 13% due to environmental variables). While explaining 

all variation in distribution may be an unrealistic goal (links between environment, fish and 

porpoises are probably intrinsically variable), further work could help to improve the models 

and their utility. For example,  

i. increasing the boat-survey effort with surveys all year around, along the whole 

Galician coast, reaching deeper areas, and keeping them in time;  

ii. studying the effects of more variables  that may affect the presence of porpoises such 

as tide, traffic of boats or fisheries information; or,  

iii. identifying areas where calving takes place and calves are reared as well as feeding 

areas. Visual observation may be insufficient for this and other possibilities should be 

considered, such as attaching time-depth recorder tags to record movements and 

behaviour, 

iv. complementing the results of different methodologies (land-based surveys, diet, 

genetics, acoustics). 
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CHAPTER IV  

Presence of harbour porpoise and habitat preference in Galician 

waters from land-based survey data. 
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Abstract  

The Galician coastline is around 1195 km long, with a series of drowned valleys “Rías” along 

the west coast and an easy access to most of the coast, and is thus a good area to carry out 

land-based survey which is a method used for studying different species of cetaceans in 

different areas. This method has several advantages such as the low cost, the opportunity to 

survey every day of the year, the prevention of under- or overestimation of sightings due to 

the response of the animals to the boat, by avoidance or attraction.  However, the study of 

cetaceans from the coast is limited by the restriction of monitoring to only those areas visible 

from the coast, and information that requires close proximity to animals is hard to collect. In 

addition, it is known that cetacean distribution is related to sea depth, therefore only the more 

coastal species can be studied. 

Data were collected by the NGO CEMMA (Coordinadora para o Estudo dos Mamíferos 

MAriños) from 2003 to 2011 by systematic monthly surveys from a series of observation points 

along the Galician coast to cover the study area as evenly as possible. 

Generalized Additive Models were used to study the effect of several environment covariates. 

But first, factors that can have some influence on the detection of cetaceans by observers 

were analysed. This is especially important for harbour porpoises which are difficult to detect 

visually. In the present study five variables were found to have some influence on the 

observers in relation to the detection of porpoises: i) the duration of the observation; the 

more time that the observers have available to search for porpoises at the station, the higher 

the probability of detecting them if they are present in the area. To avoid a decrease in the 

efficiency of the search due to the fatigue of the observers there is also a maximum of the 

duration of the observation period, which in the current study begins approximately at 100 

minutes. ii) The area available for survey (i.e. the field of view): in larger areas the probability 

of porpoise detection increases but also if it is too big the observers will probably not scan all 

the area with the same effectiveness and detection probability would be expected to reach an 

asymptote. iii) The sea state, which had an important influence on the (apparent) presence of 

porpoises. And, iv) the presence of bottlenose dolphins, being negatively correlated with 

detection of porpoises, and may be not only due to the effect on the observer but on 

porpoises themself.  

Taking into account those variables, there was a temporal trend during the study period, with 

an increase in the number of sightings over the years, which could be due to a change in the 
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distribution of the population or a growth of the population, but this last explanation does not 

seem to be possible with the life history knowledge of the harbour porpoise in the study area. 

Also, a temporal trend during the day and a spatial trend were found. There was an increase in 

the number of sightings later in the day, and the number of sightings increased northwards 

with more detections in Lugo and A Coruña (Northern stations).  

In relation to environmental variables likely to affect porpoise distribution, the depth of the 

eutrophic zone (ZEU) was significant in the models fitted, with the highest values of ZEU 

indicate areas of high productivity. In addition, more porpoises were detected in waters where 

depth was more variable, sea bed slope was greater and the continental shelf was narrower. 

This highlights the importance of high productive areas, and areas where the shelf is narrower, 

which could be related to the diet of porpoises as the principal prey varies between areas. 

However it is not only “natural” conditions that seem to determine the distribution of 

porpoises. Porpoises were not detected inside the Rías, which are mostly located along the 

West and Southern coast of Galicia, and are more industrialized and where most bottlenose 

dolphin sightings occur. Although it is difficult to demonstrate cause and effect, since 

environmental differences, presence of bottlenose dolphins and anthropogenic impacts are 

potentially confounded, areas with higher human population density were those with lower 

probabilities of detecting porpoises. 

In Spain, although the Habitats Directive requires the Member States to create Special Areas of 

Conservation (SACs), no SAC has been established specifically for harbour porpoises, although 

some of the SACs consider its presence. The results of this study provide essential information 

about this species in Galicia, which is important to keep in mind. For example, i) protected 

areas cannot be seasonal; ii) one of the key areas in the Iberian peninsula is Galicia, as is 

maybe also the case for the Gulf of Cadiz (Consejería de Medio Ambiente y Ordenación del 

Territorio 2015), with particularly high occurrence of porpoises around Punta Candieira, Vilán 

and Touriñán Cape, Punta Remedios (Lira) and Faro de Corrubedo; iii) the same SAC is not 

going to be useful for both harbour porpoises and bottlenose dolphins, as the main areas used 

by them are different and populations do not seem to behave in the same way; a large reserve 

might be suitable for both species, but only if it is big enough to cover those different areas 

required by each. 
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Introduction  

Marine ecosystems are protected by the Habitats Directive, under which one conservation tool 

is the creation of SACs by the Member States. The harbour porpoise (Phocoena phocoena) is 

included in Annex-II of the Habitats Directive, requiring the designation of SACs. Together with 

the other necessary conservation measures, those protected areas should help to maintain (or 

restore) the favourable conservation status of the natural habitats and/or populations of the 

species for which the site had been designated, prohibiting deterioration or destruction of 

breeding sites or resting places (Article 12), and avoiding their disturbance (Article 6) 

particularly during the period of breeding and migration (Article 12). In adition, the harbour 

porpoise is designated as ”vulnerable” in Spain (Catálogo Nacional de Especies Amenazadas, 

Law 4/1989, 2000). 

Moreover, the study of porpoise populations is a priority issue worldwide: IWC (International 

Whaling Commission) and ICES (International Council for the Exploration of the Sea) 

recommended studies to determine the population structure of this species and develop an 

appropriate management plan (IWC 1998) in order to reduce negative impacts on their 

populations.  

The population of harbour porpoises in Galician waters has been described as genetically 

isolated from the rest of the North East Atlantic (Fontaine et al 2007, 2014, see also Chapter 

II), is known to be present all year around (Lopez et al 2002, López 2003, Pierce et al 2010) and 

seems to be a coastal species, although it needs to be confirmed by more surveys at deeper 

areas (López et al 2002, Pierce et al 2010, Spyrakos et al 2011, Fernández et al 2013, Méndez-

Fernandez et al 2013, 2014 a, b).  Their abundance has been estimated to be 974 (CV=0.84) 

individuals in an area extending from SW France, along the Atlantic coast of Spain and Portugal 

(Hammond et al 2013); of 683 porpoises (CV=0.63) in Galicia and Cantabria (López et al 2013), 

and of 386 porpoises (CV= 0.71) in Galicia (López et al 2012). The first of these estimates 

derives from the SCANS-II survey in July 2005 while the latter are based on several and 

independent surveys in the period of 2003 - 2011 in North Spain. 

The Galician coastline is around 1195 km long, with a series of drowned valleys (“Rías”)  along 

the west coast, and a narrow continental shelf with a maximum width of 80 km at A Coruña 

(Cabanas 1999). Galicia is located at the northern limit of the NW African upwelling system, 

which produces an enrichment that favours biological production (Cabanas 1999), and helps 

make Galicia the main fishing region of Spain and one of the most important in the world. Its 
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topography and the location of 58% of Galician population at the coast contribute to have an 

easy access to most of the coast, and makes the land-based survey method to study cetaceans 

a good choice.  

Land-based survey is a method used for studying different species of cetaceans in different 

areas (e.g. Goodwin 2008, Pierce et al 2010, Dolman et al 2013, Arranz et al 2014). Comparing 

with boat-surveys, it is a method with relatively low costs and it is easier to access the entire 

coast than it is by boat surveys, as observers can travel to stations by car or even walking. 

Another advantage is the opportunity to survey every day of the year, which is not always 

possible with boat-surveys, as days-at-sea are usually limited to some period of the year due to 

economic, weather or logistic reasons. Also the under- or overestimation of sightings due to 

the response of the animals to the boat, both by avoidance and attraction (e.g. Williams et al 

2002 a, b, 2004, Scheidat et al 2004, Lusseau 2006, Christiansen et al 2010), is prevented. 

However, the study of cetaceans from the coast is limited by the restriction of monitoring to 

only those areas visible from the coast, and information that requires close proximity to 

animals is hard to collect. In addition, it is known that cetacean distribution is related to sea 

depth (Caretta et al 2001, Cañadas et al 2003, Santora 2012); therefore only the more coastal 

species can be studied. 

Data recorded by this method are effective to study temporal and spatial trends with accuracy 

and provide standardized, effort-based information on species presence and relative 

abundance in coastal waters (Evans and Hammond 2004). Although studies such as the one 

carried out by Dolman et al (2013) obtained comparable densities of harbour porpoise and 

minke whales (Balaenoptera acutorostrata) from boat and land-based surveys, it is important 

to keep in mind that the occurrence of animals is monitored in a particular restricted area and 

not the population at large, and if broader geographical coverage is required, it may be 

advantageous to combine monitoring from fixed stations with offshore line transects (Evans 

and Hammond 2004). 

Cetacean data obtained  can be used in habitat modelling, a potentially powerful tool for 

predicting cetacean distributions and understanding the ecological processes determining 

these distributions, which has already been used to incorporate this variability into monitoring 

programmes and management measures, including improvement of abundance estimates, 

development of marine protected areas, and understanding cetacean–fisheries interactions 

(Redfern et al 2006).  
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In 2003 systematic monthly surveys were established by the NGO CEMMA (Coordinadora para 

o Estudo dos Mamíferos MAriños) along the Galician coast. Pierce et al (2010) found that the 

most frequently recorded species from the coast during 2003 - 2007 were the bottlenose 

dolphin (Tursiops truncatus), common dolphin (Delphinus delphis), harbour porpoise, Risso’s 

dolphin (Grampus griseus) and long-finned pilot whale (Globicephala melas), each with 

different distribution patterns along the coast (see also López 2003, Lopez et al 2004, 

Fernández 2010, Pierce et al 2010, Spyrakos et al 2011, Méndez-Fernandez et al 2013, 

Fernández et al 2013). The land-based data collection continued until 2013. Here we consider 

data up to 2011, as well as using several additional environmental variables not considered in 

the earlier study, with the aim of focusing on harbour porpoise to study i) seasonal and ii) 

temporal trends in harbour porpoise distribution in the study area, iii) to compare its 

distribution with that of the bottlenose dolphin, iv) to study the environmental characteristics 

of the habitat where harbour porpoises are present and compare them with previous studies 

of the habitat use by cetaceans of that area (Fernández 2010, Pierce et al 2010, Spyrakos et al 

2011, Méndez-Fernandez et al 2013, Fernández et al 2013).  

The information about harbour porpoise in Galicia obtained can be used for the development 

of a management plan, including the establishment of SACs. Moreover, together with other 

ongoing and previous studies (boat surveys, strandings, by-catch), it will help to evaluate the 

status of porpoises, as part of the evaluation of “good environmental status” (GES) in Galician 

waters as required by EU regulations as required by the Marine Strategy Framework Directive.
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Materials and methods 

Study area. 

The Galician coastline has a length of around 1195 km with cliffs, sandy beaches, and a series 

of “rías”, which are flooded tectonic valleys of moderate depth. At the mouths of the Rías 

Baixas (Rías of Vigo, Pontevedra and Arousa, in south Galicia) there are the archipelagos of 

Cíes and Ons, and Sálvora Island. The narrow continental shelf of Galicia (mostly 20 - 35 km 

wide, with a maximum of 80 km) is influenced by seasonal upwelling (Fraga 1981) caused by 

northerly winds, during spring and summer, and Ekman transport. This oceanographic process 

is important especially due to the associated enrichment, which favours biological production 

(Cabanas 1999) and makes Galicia the main fishing region of Spain and one of the most 

important in the world, and the region with, for example, the highest mussel (Mytilus 

galloprovincialis) production in the world on floating rafts. In total, 22 cetacean species have 

been recorded in this area (Piñeiro-Seage 1989, López et al 2003, Covelo et al 2009, 2015). 

Survey design and data collection.  

In 2003, CEMMA searched the Galician coastline to identify optimal observation stations / 

points (OP) for the systematic survey of the entire coast for the study of cetaceans. The OP 

must afford a good view of the sea, be high enough to allow observation of a large area of sea 

but not so high as to decrease the detectability of small species present in the study area such 

as the harbour porpoise, and offer easy accessibility for the observers. 

In total 54 OP were selected and are shown in Fig. 24 and Appendix IX a, b. It was not possible 

to establish stations on the Islands due to the difficulty of transport in autumn and winter, 

although some observations were made from the islands, for example on Ons (at Burato do 

Inferno) in 2007.  

For each OP, latitude and longitude are known (Appendix IX a, b). Because of logistic and 

financial reasons, an analysis of the efficiency of the OP coverage was carried out and found 

that the number of stations could be reduced to 30 without the decreasing the ability of the 

survey to detect trends (Pierce et al 2010), therefore for the study of temporal and spatial 

trends only data from these 30 OP from 2003 to 2011 were used (Appendix IX a).  
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Figure 24. Positions of the observation points along the coast of Galicia. Yellow dots are the 30 

points at which observation was carried out from 2003 to 2011; blue dots are observation 

points at which effort was also done from 2003 to 2007. Depth contours of 100, 200 and 500 

m are represented. 

Each OP was visited at least once during every month, usually by 2 observers (ranging from 1 

to (very rarely) 9) who scanned the sea continuously with naked eyes, or using binoculars or 

telescopes. The duration of observations averaged 38 min (ranging 5 – 215 min; Fig. 25). 

The data collected during each observation period included date, observation station, time at 

which observation started and finished, observer identity and optics used (binoculars only, 

telescope only, binoculars and telescope, none). Also some environmental data were 

collected: wind strength (Beaufort scale) and direction, sea state (Douglas scale), visibility 

(ranging from 0: dense fog, to 5: visibility of more than 10 miles) and estimates of the depth of 

field of view and the angle describing the field of view. The area covered by each observation 

at each OP was calculated from the last two parameters. 

Data recorded for each sighting were: the time at which animals were detected, duration of 

the observation, estimates of the distance from the observer to the animals, angle (in relation 

to North), species, group size, type of group (compact, dispersed, mixed) and behaviour 
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(swimming (direction of travelling), resting, feeding, jumping, interactions with other species 

or boats). 

 

 

Figure 25. Duration of the observation periods in hours from coastal surveys at 30 Observation 

Points a) per year, b) per month, c) per observation point. In each case, the mean value is 

represented by a black line, and maximum and minimum values are shown as dashed lines. 

Total number of hours at each one is shown as black dots. Total number of periods of 

observation is shown as white dots. Number of hours per year, month and Observation Point is 

shown In Appendix IX. 

Environmental  data. 

For the analysis of habitat use, a number of potential explanatory variables were considered: 

sea surface temperature (SST), chlorophyll concentration (CHL), euphotic depth (ZEU), 

photosynthetically active radiation (PAR), depth (DEP), seabed slope (DEP_SL), seabed aspect 

(DEP-ASP, that was separated into south-north and east-west components,  using the sine and 

cosine, DEP-ASP-sin, DEP-ASP-cos), their standard deviations (SST-STD, CHL-STD, ZEU-STD, 

PAR-STD, DEP-STD, DEP_SL-STD, DEP-AS-STD) and, the distance from the OP to the 200 m 

isobaths (Dist_200m).  

a) 

c) 

b) 
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The study area is well monitored in terms of monthly satellite imagery. MODISA (Moderate 

Resolution Imaging Spectroradiometer Aqua at 4 km spatial resolution Level-3 datasets) sea 

surface temperature distribution (SST in oC), sea surface chlorophyll concentration (CHL in 

mg/m3), photosynthetically active radiation (PAR in Einstein/m2/day), and euphotic depth 

(ZEU in meters) were downloaded through Oceancolor Web, NASA's online Distributed Active 

Archive Center. These monthly satellite datasets were downloaded in HDF (Hierarchical Data 

Format) and converted to ArcGIS grids through specific routines developed in AML 

(Arc Macro Language) for the workstation version of ArcGIS (ArcInfo). Bathymetry (DEP in 

meters at 800 m spatial resolution) was downloaded from GEBCO_08 (General Bathymetric 

Chart of the Oceans) and bathymetry slope (SLO) and aspect (ASP) were calculated in radians 

by applying the corresponding Z factor for the average latitude of the study area. 

Mean environmental and bathymetry parameters were calculated for each sampling point 

using a buffer zone of 20 km around each point. The procedure was carried out in the 

workstation version of ArcGIS using the grid zonal function 'zonalstats' for calculating mean 

and standard deviation (zonalstats function with the {moment} argument). Dist_200m was the 

distance from the OP to the 200 m isobath and was calculated using the ArcInfo workstation 

8.0.2 NEAR function. The 200 m isobath was derived from GEBCO (www.gebco.net). 

In addition, the human population index (POP) was included as a possible indicator of 

disturbance experienced by porpoises, and was calculated using Gridded Population of the 

World Version 3 (GPWv3), with a raster data are at 2.5 arc-minutes resolution and a buffer of 

200 km. 

Statistical analysis. 

To analyse the significance of the variation of the sighting rates between SA, years and 

months, effects of year-SA and season-SA interactions were evaluated using a Chi-squared 

test. They were also carried out for group size, as groups with more than 4 individuals were a 

few, 4 groups were created: 1 individual, 2 individuals, 3 individuals and 4 individuals or more. 

The Zuur et al (2010) protocol of eight steps for data exploration was followed to minimise 

type I and type II errors, although some violations of assumptions have little impact on the 

results or ecological conclusions (Zuur et al 2010). Those steps are: 1 - detection of outliers in 

response (Y) and explanatory (X) variables; 2 - study the homogeneity of y; 3 - study the 

normality of y; 4 - investigate “zero trouble” (i.e. zero inflation) in Y; 5 - study the collinearity of 
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different X; 6 - study the relationship between Y and X; 7 - search for interactions; and 8 - study 

the independence of Y (i.e., autocorrelation).  

For the data exploration, boxplots, conditional boxplot and Cleveland dotplot / Dotcharts were 

plotted and correlations and Variance Inflation Factors (VIF) were calculated. As the response 

variables were binomial, no histograms or QQ plots were created. The result was that several 

of the explanatory variables had to be removed due to the presence of correlation with other 

covariates: DEP, SLO-STD and POP. Also the Easting component was removed as it was strongly 

correlated with the Northing component (presumably a consequence of the shape of the 

coastline) (Zuur et al 2007). 

Harbour porpoise presence was considered as the response variable. 

A three-step modelling process was used. Variables that could affect the detection of the 

harbour porpoises by the observers were firstly studied. Those variables were: number of 

observers, height of the OP, optics used, wind strength (Beaufort scale) and direction 

(Northing component), sea state (Douglas scale), visibility, area surveyed, duration of the 

observation and presence of bottlenose dolphins. 

The final stage 1 model was used as the base for two further models, one model (stage 2A) 

containing spatial and temporal covariates, which aims to describe spatiotemporal variation in 

cetacean presence, and another one (stage 2B) including environmental covariates, which 

attempts to explain spatiotemporal variation. For model 2A, the covariates studied were: 

observation point, day of the year, year, time at which observation started. Observation point 

is used as a proxy for latitude and longitude, treating the coastline as a linear feature. For 

model 2B, covariates were: SST, SST-STD, CHL, CHL-STD, ZEU, ZEU-STD, PAR, PAR-STD, DEP-

STD, SLO, DEP-ASP-sin, DEP-ASP-cos, ASP-STD, POP-STD, Dist_200m). 

Generalised additive models (GAMs) permit non-normal distributions of response variables 

(including binary, discrete or continuous variables) and non-linear relationships between 

continuous covariates and the response variable, which are described with non-linear smooth 

functions (Hastie and Tibsshirani 1990). These models have been described as suitable to 

capture non-linear cetacean-habitat relationships (Redfern et al 2006). Therefore, they were 

used in this study to relate the presence of harbour porpoise to spatial, temporal and 

environmental covariates. 

The distribution selected for the response variable was binomial (presence/absence data) and 

a logit link function was used. Covariates were fitted as smoothers except for year, which had 
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too few unique values.  Degrees of freedom (k) were limited to permit to fit a smooth curve for 

variables with few values (e.g. Douglas) and to avoid overfitting or fitting unrealistically 

complex relationships (Zuur et al 2007) for environmental variables. Thus k=3 was used for 

covariates affecting the observers and the OP which have few different values and k=4 for 

spatial temporal and environmental covariates.  

For the model selection the protocol of forwards selection was followed. The main criterion for 

the model selection followed was the Akaike’s Information Criterion (AIC) and the percentage 

deviance explained by the set of explanatory variables in the model. In addition, where the AIC 

was uninformative about whether it was necessary to add an additional variable (e.g. AIC 

values differed by less than 2), F tests were used to compare nested models. Final best models 

were validated using plots of residuals versus fitted values to check for patterns and for 

homogeneity. 

All these analyses were done using the software R.2.11.1 and Brodgar 2.7.2 

(www.brodgar.com). 



145 
 

Results  

Effort and sightings. 

From 2003 to 2011 a total of 2325.8 h of effort was completed. As explained in the material 

and methods, from 2006 onwards not all of the original 54 Observation Points (or Stations, OP) 

were visited. Therefore all results presented correspond to the 30 Observation Points that 

were visited every year from 2003 to 2011 (Appendix IX, Fig. 24). This represents a total of 

1847.95 h of observation; the distribution of observation effort by stations and year or month 

is shown in Appendix X. The study started in September 2003; thus this year has fewer hours of 

observation. Comparing across years and between months, the total duration of observations 

was lowest in 2003 (77.27 h) and in January (131.75 h), and was highest in 2004 (242.10 h) and 

in September (190.50 h). Mean values of the duration of the observations for each visit at each 

year, month and Station are shown in Fig. 25. There were differences between minimum and 

maximum number of hours of observation at different observation points. Observation 

duration ranged from 5 min to 215 min, with an overall mean value of 37.98 minutes. 

A total of 671 sightings of cetaceans was recorded (Table 14), with an overall encounter rate of 

0.363 animals per hour for all species. The most commonly sighted species of cetacean 

recorded were bottlenose dolphin (Tursiops truncatus) (54.8% of sightings) common dolphin 

(Delphinus delphis) (21.8%), and harbour porpoise (Phocoena phocoena) (12.4%). Other 

species observed were long-finned pilot whale (Globicephala melas), Risso’s dolphin (Grampus 

griseus), fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) 

(Table 14 a). Years 2004 and 2008 were the ones with most sightings (n=98 each year). If these 

data are considered per hour of observation (ER; Table 14 b), bottlenose dolphin remains the 

most commonly sighted species, followed by common dolphin and harbour porpoise. In 

contrast, it can be seen that there is not much difference between years, with the highest ER 

at 2008 in 2011, although from 2004 to 2007 and 2009 values were enough to be statistically 

significant (χ2= 45.86, d.f.= 8, p<0.001). 
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a) 

SPECIES 2003 2004 2005 2006 2007 2008 2009 2010 2011 TOTAL 
% 

TOTAL 

Tursiops truncatus 13 40 41 45 58 52 43 30 46 368 54.8 

Delphinus delphis 4 34 18 19 15 19 10 15 12 146 21.8 

Phocoena phocoena 0 9 12 12 3 13 13 6 15 83 12.4 

Globicephala melas 0 4 0 2 0 1 2 1 2 12 1.8 

Grampus griseus 1 1 2 2 2 0 1 1 1 11 1.6 

Balaenoptera physalus 0 0 0 0 2 1 0 0 0 3 0.4 

Balaenoptera acutorostrata 0 0 0 0 0 0 2 0 0 2 0.3 

Unidentified delphinid  0 8 2 2 6 10 8 2 0 38 5.7 

Unidentified mysticetes 0 1 1 1 1 1 0 0 1 6 0.9 

Unidentified cetacean 0 1 0 0 0 1 0 0 0 2 0.3 

TOTAL 18 98 76 83 87 98 79 55 77 671 100 

 

b) 
 

SPECIES 2003 2004 2005 2006 2007 2008 2009 2010 2011 TOTAL 

Tursiops truncatus 0.169 0.151 0.203 0.210 0.244 0.225 0.189 0.145 0.247 0.199 

Delphinus delphis 0.052 0.129 0.089 0.089 0.063 0.082 0.044 0.072 0.064 0.079 

Phocoena phocoena 0 0.034 0.059 0.056 0.013 0.056 0.057 0.029 0.081 0.045 

Globicephala melas 0 0.015 0 0.009 0 0.004 0.009 0.005 0.011 0.006 

Grampus griseus 0.013 0.004 0.010 0.009 0.008 0 0.004 0.005 0.005 0.006 

Balaenoptera physalus 0 0 0 0 0.008 0.004 0 0 0 0.002 

Balaenoptera acutorostrata 0 0 0 0 0 0 0.009 0 0 0.001 

Unidentified delphinid 0 0.030 0.010 0.009 0.025 0.043 0.035 0.010 0 0.021 

Unidentified mysticetes 0 0.004 0.005 0.005 0.004 0.004 0 0 0.005 0.003 

Unidentified  cetacean 0 0.004 0 0 0 0.004 0 0 0 0.001 

TOTAL 0.234 0.371 0.376 0.387 0.366 0.424 0.347 0.265 0.414 0.363 

 
 

Table 14.  Number of sightings per year and species for the 30 Observation Points a) in total, 

and b) per hour of effort. 

There was a total of 83 sightings of harbour porpoises with a total duration of 13.33 h. Faro 

Corrubedo (OP number 19) was the OP with most records, and most of the sightings were in 

SA 3 and 4 (Fig. 26, 276 c). No porpoise sightings were recorded at 11 stations, including all five 

stations in SA.5 and those in the Ría of Vigo (OP 25, 26, 27). These differences between 

subareas are highly significant (χ2= 26.97, d.f.= 5, p<0.001). 

The year with most sightings of porpoises was 2011; 2007 was the year with fewest records 

except for the three months of survey in 2003 when no porpoises were detected (Fig. 27 a). 

Through the year, there are differences between months in the number of porpoise sightings. 

The month with fewest sightings records is November, although February, June and August all 

have only one more record (Fig. 27 b); July was the month in which most porpoises were seen.  
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Figure 26. Sightings of harbour porpoise from data collected at 30 observation points along the 

coast from 2003 – 2011. Red dots are Observation Points at which sightings were carried out. 

The size of the dot depends on the number of sightings. Depth lines of 100, 200 and 500 m are 

also represented. 

Although the difference between years was found to be significant (χ2= 19.07, d.f. = 9, p<0.05), 

the difference between months was not significant (χ2=13.45, d.f.=12, P>0.05). If the 

differences (between subareas) in the number of sightings are examined through the years 

(Fig. 27 d) or months (Fig. 27 e) along the coast, no clear patterns are detected. There was no 

significant interaction between year and SA effects (χ2= 3.14, d.f.= 11, P>0.05), but there was a 

season and SA interaction ( χ2= 44.25, d.f.= 15, p<0.005). To analyse this interaction a GAM 

was carried out (Y ~ 1  + as.factor(SA) + s(Season, k=4, by = as.factor(SA)), Deviance explained 

6.22%) and showed that there were differences in the distribution of the probability of 

detecting porpoises in four subareas (Fig. 28): in SA.2 and  SA.3 there was a linear increase in 

the number of sightings since the beginning of the year, in contrast in SA.4 and SA.6, what was 

found was a decrease in the detection of porpoises since January until the end of the year. This 

could mean that porpoises move from the northern areas to the southern areas along the 

year. 
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Figure 27. Mean numbers of sightings of harbour porpoises from coast surveys at 30 

observation points, a) per year, b) per month, c) per observation point, d) per year and 

observation point, e) per month and observation point. In the graphs a), b), c) they are also 

shown the hours of observation (back dots) and number of observation periods (white dots) 

on the right axis. 

 

 

a) b) 

c) 

d) 
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Figure 27.  Continued. 
 

 

  
 

Figure 28. GAM showing the interaction between season and Sub-Area in the distribution of 
the probability of detecting porpoises. Significant subareas were: a) SA.2, b) SA.3, c) SA.4, d) 

SA.6.  
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Figure 28. Continued. 

The mean encounter rate for harbour porpoise was 0.044 sightings per hour; 2011 was the 

year with the highest encounter rate and 2007 was the year with the lowest encounter rate 

(Fig. 29 a). The months with most sightings were also the ones with highest encounter rates 

(Fig. 27, 29 b). In relation to both seasonal and year-to-year patterns, the highest encounter 

rates corresponded with highest number of sightings (Fig. 27 a, b, 25 a, b) 2005 and July 

respectively.  Along the coast, the OP.16 (Punta Remedios, Lira) was the point with highest ER 

and OP.5 (C. Ortegal) and OP.11 (C. San Adrián) had the lowest values of ER (Fig. 29 c). 

Between sub-areas, SA.1 had the highest ER and SA.6 had the lowest ER (Fig. 29 c, 30). 

 

Figure 29. Variation of the average encounter rate for harbour porpoise a) per year, b) per 

month and c) per Observation Point. Dashed lines: upper 95% interval, black lines: overall, dots 

lines: lower 95% interval.  
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Figure 29. Continued 

 

Figure 30. Encounter rate (ER) for harbour porpoise by Sub-Area expressed as number of 

sightings per hour. 

Significant differences in mean group size were detected between years, months and areas 

(Table 15 a, b) (χ2=23.15, d.f.=10, p<0.05; χ2=54.14, d.f.=14, p<0.005; χ2=28.81, d.f.=7, 

p<0.001; respectively). The highest average group sizes were found in 2009 (3.5 individuals), 

August (4.0 individuals), SA.1 (4.5 individuals) and at Stations 5 and 11 (5 individuals). In 

contrast, the smallest average group sizes were found in 2007 (1.3 individuals), December (1.5 

individuals), SA. 6 (1.7 individuals) and at Observation Points 18 and 28 (1.5 individuals).  

c) 
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Only two sightings were inside the rías (Ría of Muros, Observation Point 18) and most of them 

were in waters of between 10 m and 50 m of depth (Fig. 31). 

a) 

2003 2004 2005 2006 2007 2008 2009 2010 2011       

- 2.9 3.3 2.1 1.3 2.8 3.5 1.5 3.3 

   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2.0 1.8 2.6 3.2 2.0 2.5 3.5 4.0 2.8 2.8 6.7 1.5 

 

b) 

SA.1 SA.2 SA.3 SA.4 

4.5 3.7 3.1 2.2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

3.8 5.7 1.8 4.0 5.0 4.7 - - 2.7 4.3 5.0 2.0 3.3 2.7 3.4 1.9 - 1.5 2.0 

 

SA.5 SA.6 

- 1.7 

20 21 22 23 24 25 26 27 28 29 30 

- - - - - - - - 1.5 2.0 1.6 

 

Table 15. Variation of the mean group size for harbour porpoise for a) year and month and b) 

Sub-Area and Observation Point. 

 

Figure 31. Distribution of the number of sightings of harbour porpoises (black) and bottlenose 

dolphins (white) sightings depending on the depth classes. L.R. limit of Rías, I.R. Inside Rías. 

Comparing the sightings of harbour porpoises with the most common species along the Galicia 

coast waters, the bottlenose dolphin, the latter was seen mostly inside the rías, where few 

sightings of porpoises were recorded (Fig. 31, 32, 33 c). There were five stations at which only 

porpoises were seen and six at which there were no sightings of either bottlenose dolphins or 

harbour porpoises. The number of sightings of bottlenose dolphins per year was more variable 
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than for porpoises, and bottlenose dolphin sightings declined over the study period 

(χ2=1046.97, d.f.= 9, p<0.001). Porpoise presence was more constant through the years (Fig. 

33 a).  

In contrast, neither species showed clear monthly patterns. There was no obvious relationship 

between monthly sightings of the two species (Fig. 33 b). To study if there were differences in 

the distribution of bottlenose dolphin sightings between season and SA, a GAM was fitted (Y ~ 

1 + as.factor(SA) + s(Season, k=4, by = as.factor(SA)), Deviance explained 11.6%) showing that 

there was an effect of season in four subareas (Fig. 34): in SA.2 there was a decrease in 

bottlenose dolphin sightings in summer and autumn, in SA.3 there was a peak in summer, in 

SA.5 which was no significant for porpoises there was an decrease along the year and, finally, 

in SA.6 in contrast to last subarea there was an increase since the beginning of the year, this 

result found in SA.6 was the opposite of what was found for porpoises. Considering the 

encounter rate (ER) for both species (harbour porpoise, bottlenose dolphin), higher values 

were found for bottlenose dolphins (Fig. 35 a-c). Some differences were detected in the 

distribution of sightings: for dolphins there was less variation between years. When ER for 

both species at each OP was studied, differences between areas with highest values of ER for 

each species were clearer. For bottlenose dolphins, areas with highest ER were in S.A.2 and 3, 

while S.A.4 and 5, which correspond to the rías, were also important for the presence of this 

species. For harbour porpoises, in contrast, highest values of ER were found in North Galicia 

(S.A.1 and 2, and in S.A.3 and 6), where presence of bottlenose dolphins was less frequent 

(lower ER). The highest ER was found for bottlenose dolphins in S.A.5 and 6, at Udra Cape and 

Ons Island. 
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Figure 32. Sightings corrected by effort of a) harbour porpoise and b) bottlenose dolphin, from 

all data collected from 2003 to 2011. The size of the dot depends on the number of sightings. 

Depth lines of 100, 200 and 500 m are represented. 

a) 

b) 
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Figure 33. Comparison of sightings of harbour porpoises (black line) and bottlenose dolphins (whitedashed line) on the left axis, hours of observation (closed 

circles) and number of observation periods (open circles) on the right axis per a) year, b) month, and c) observation point.

a) b) 

c) 
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Figure 34. GAM showing the interaction between season and Sub-Area in the distribution of 

the probability of detecting bottlenose dolphins. Significant subareas were: a) SA.2, b) SA.3, c) 

SA.5, d) SA.6. 
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Figure 35. Comparison of average encounter rate (ER) of harbour porpoises (black) and bottlenose dolphins (white) per a) year, b) month, and c) observation 

point.
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Models and selection criteria. 

When modelling the effect of the environmental covariates on the observers, a total of 33 

models were fitted (Annex XI an XII). The final model was the one with lowest AIC value and 

highest percentage of deviance explained. This model, where Y = porpoise presence, includes 5 

explanatory variables: 

 Y ~ 1 + s(Obs_min, k=3) + s(Area_km2, k=3) + s(Beaufort, k =3) + s(Sight_TTR, k=3) + 

s(Douglas, k=3) (AIC 743.06, Deviation Explained 11.6%). 

The model shows a positive relationship between sightings of harbour porpoises and the 

duration of the observation period, for periods of up to approximately 100 minutes (edf=1.85, 

P < 0.001, Fig. 36 a).  A similar relationship was found for the km2 of area covered, for areas of 

up to around 30 km2 (edf=1.78, P < 0.001, Fig. 36 b). The model also showed a linear decrease 

in sightings of harbour porpoises as the Beaufort value increases (edf=1, P < 0.001, Fig. 36 c), 

and bottlenose dolphins were detected (edf=1, P < 0.001, Fig. 36 d). Porpoises were most 

frequently seen when Douglas values were in the range 2 to 3 (edf=1.72, P < 0.001, Fig. 36 e).  

  

Figure 36. GAM results: smoothers showing partial effects of environment on the observers. 

Covariates: a) duration of the observation (min), b) area covered at the survey (km2), c) 

Beaufort, d) sighting of bottlenose dolphins, e) Douglas. 

a) b) 
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Figure 36. Continued. 

Then GAM models were fitted with the variables affecting observation plus spatio-temporal 

covariates (i.e. year, month, time of day, PC). A total of 17 models were fitted (where Y = 

porpoise presence; Annex XIII and XIV), and a final best model with all the covariates 

significant and with the lower AIC was selected: 

Y ~ 1 + s(OBS_min, k=3) + s(AREA_km2, k=3) + s(BEAUFORT, k=3) + s(Sighting_TTR, k=3) 

+ s(YEAR, k=4) + s(START_OBS, k=4) + s(OP), 709.11AIC, 17.2% of deviance explained. 

The partial effects of these covariates are shown in Fig. 37. The covariate Douglas, which was 

statistically significant in the previous model, become non-significant and it was dropped out.  

The other covariates kept from the model fitted for the effect of the environmental co-

variables on the observers remained significant and with the same effects, only the effective 

degrees of freedom changed for AREA_km2 (edf=1.82, P < 0.001, Fig. 37 b). There was a linear 

e) 

d) c) 
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increase of sighting rates as the observation period increases (OBS_min; edf=1.85; P < 0.001, 

Fig. 37 a) from the first year of study to the last one (edf=1, P< 0.0001; Fig. 37 e); there was 

also a linear increase in the probability of detecting porpoises with the time of the day at 

which observations took place (START_OBS; edf=1, P < 0.0001; Fig. 37 f). There was a negative 

linear relationship between sightings of harbour porpoises and the position of the station 

along the coast (edf=1, P < 0.0001, Fig. 37 g), the probability of detecting porpoises being 

higher at the OP in the North-east than at those in South Galicia. 

  

  

Figure 37. GAM results: showing partial effects of time and space covariates: a) duration of the 

observation (min), b) area covered at the survey (km2), c) Beaufort. Also illustrated are 

smoothers showing partial effects of habitat covariates: d) sighting of bottlenose dolphins, e) 

year, f) the time of the day at which observations begun, and g) observation point. 

d) c) 

b) a) 
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Figure 37. Continued. 

Finally, GAM models were fitted with the variables affecting observations plus habitat 

covariates. As the number of covariates was high, to streamline the model selection process, 

when a variable was not statistically significant it was dropped out. Two of the covariates that 

were statistically significant in the previous model, Douglas and sightings of bottlenose 

dolphins, became non-significant and were dropped out.  Of a total of 274 models fitted 

(where Y = porpoise presence; Annex XV and XVI), 15 models were found to have very similar 

AIC, but the model with all the covariates significant and with the lowest AIC was:  

Y ~ 1 + s(OBS_min, k=3) + s(AREA_km2, k=3) + s(BEAUFORT, k=3)+ s(W_Northing, k=4) + 

s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + s(POP_STD, k=4) + s(D_200m, 

k=4), 541.09 AIC, 22.7% of deviance explained. 

f) e) 

g) 
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The partial effects of these covariates are shown in Fig. 38. For the three covariates kept from 

the model fitted for the effect of the environmental co-variables on the observers, the effect 

and statistical significance were the same, but the effective degrees of freedom changed for 

OBS_min (edf=1.9, P < 0.001, Fig. 38 a) and AREA_km2 (edf=1.88, P < 0.001, Fig. 38 b). For the 

habitat covariates, all variables have a linear effect except W_northing and DEP_STD. There 

were more sightings when the wind came from the East (edf=1.95, P < 0.05, Fig. 38 d) and for 

areas with more variability in depths (edf=2.88, P < 0.05, Fig. 38 g).There were positive linear 

increases of sightings with increases in the slope (edf=1, P < 0.05, Fig. 38 e) and in ZEU (edf=1, 

P < 0.1, Fig. 38 f), while the effects of both POP_STD and DIST_200m were negative and linear, 

with a decrease in the probability of sighting porpoises with an increase of the standard 

deviation of the density of the human population in the area (edf=1, P < 0.01, Fig. 38 h) and an 

increase in the distance from coast to the isobath of 200 m depth (edf=1, P < 0.01, Fig. 38 i), 

thus when the platform is wider. 

   

Figure 38. GAM results: showing partial effects of environment on the observers:  covariates: 

a) duration of the observation (min), b) area covered at the survey (km2), c) Beaufort. And 

smoothers showing partial effects of habitat covariates: d) wind aspect northing, e) mean 

value of the sea slope, f) mean values of the euphotic depth (m), g) standard deviation of the 

depth (m), h) standard deviation of the human population (individuals per km2), i) distance 

from coast to the 200 m isobath (decimal degrees). 

a) b) 
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Figure 38. Continued. 

d) e) 

c) 

g) f) 
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Figure 38. Continued. 

i) h) 
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Discussion  

For the monitoring of cetaceans in Galician waters, land-based surveys were carried out from a 

series of observation points along the coast to cover the study area as evenly as possible. This 

method has the advantages of being low cost, has the possibility of surveys all year around and 

it is effective to study temporal and spatial trends and provide important information on 

species presence and relative abundance in coastal waters (Evans and Hammond 2004).  

Moreover, land-based surveys prevent one of the main factors leading to the over- or 

underestimation of cetacean abundance since the cetaceans are not influenced by the 

presence of survey boats by avoiding or being attracted to them (e.g. Palka and Hammond 

2001, Williams et al 2002 a, b, Cañadas and Hammond 2008, Scheidat et al 2004, Lusseau 

2006, Christiansen et al 2010). On the other hand, there are also some obvious disadvantages 

such as the limitation of studying only coastal species (Carretta et al 2001, Cañadas et al 2003, 

Santora 2012), and the restriction of monitoring only those areas visible from the coast. 

Various factors can have some influence on the detection of cetaceans by observers during 

land-based (and/or boat-based surveys) and should be taken into account. This is especially 

important for harbour porpoises, which are small in size, have cryptic surfacing behaviour (it is 

relatively rare to see more than the dorsal fin and a part of the back), doing long dives 

between breathing sequences, spending little time at the water’s surface, and they are often 

solitary (Westgate et al 1995, Read 1999, Heide-Jørgensen 2013). Thus harbour porpoises are 

difficult to detect. If those variables that can affect their detection by observers are not 

considered, together with porpoise behaviour, there could be an underestimation of the 

population or even an incorrect interpretation of lack of sightings as absence in an area. 

The harbour porpoise is a species that in general forms small groups consisting of a few 

individuals (Read 1999). In Galicia, porpoises were found to occur as solitary individuals or in 

groups of up to 8 individuals, although most of the sightings were of solitary individuals or 

pairs. However large aggregations of tens to hundreds of individuals have been recorded in the 

Western North Atlantic (Hoek 1992). In the present study there were differences in the size of 

the groups between different years, months and subareas, but there was no clear trend in 

those variations.  

In the present study five variables were found to have some influence on the observers in 

relation to the detection of porpoises. As mentioned above, porpoises are difficult to detect, 

and therefore, the more time that the observers have available to search for porpoises at the 
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station, the higher the probability of detecting them if they are present in the area. Because 

the observers can get tired, there also should be a maximum duration of the observation 

period to avoid a decrease in the efficiency of the search, which in the current study begins 

approximately at 100 minutes. Something similar happens with the area available for survey 

(i.e. the field of view): in larger areas the probability of porpoise detection increases but also if 

it is too big the observers will probably not scan all the area with the same effectiveness and 

detection probability would be expected to reach an asymptote.  

In addition, many authors have identified sea state (e.g. expressed as Beaufort and/or 

Douglas), as an important factor for the detection of porpoises (Palka 1996, Evans and 

Hammond 2004, Weir et al 2007, Tynan et al 2005, Marubini et al 2009, Embling et al 2010, 

Pierce et al 2010, Booth et al 2013, Dolman et al 2013, de Boer et al 2014, Chapter III). The 

present study also found that sea state had an important influence on the (apparent) presence 

of porpoises. However, interestingly, whereas Beaufort has a clear negative linear relationship 

with detection of porpoises, Douglas has a positive effect until values of 2. In addition, when 

analysing the spatial and temporal trends or effects of environmental conditions, the best 

models fitted all excluded the Douglas variable. This might indicate that Beaufort has a more 

significant impact on the detection of porpoises and/or that the effect of the Douglas value is 

masked by effects of other environmental covariates. 

Finally, the presence of bottlenose dolphins was also found to be important, being negatively 

correlated with detection of porpoises. This is another species common in Galician coastal 

waters (López 2003, Lopez et al 2004, Pierce et al 2010, Spyrakos et al 2011) and may have an 

influence on the distribution of porpoises due to the possible avoidance by porpoises of 

competition and/or attacks (López and Rodríguez 1995, Alonso et al 2000, Mendez-Fernández 

et al 2013). In addition, the presence of dolphins might distract observers from seeing 

porpoises. However, it is important to note that an apparently negative relationship could 

arise simply due to the two species having different habitat preferences. Once the conditions 

that affect the detection of harbour porpoises were taken into account, a temporal trend was 

found during the study period, with an increase in the number of sightings over the years. A 

previous analysis of part of the current dataset, using data up to 2007 (Pierce et al 2010), did 

not find such a trend, although more porpoises were seen in 2004 than 2003. However, the 

longer time series available for the present analysis gives greater statistical power to detect 

interannual trends.  
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In addition, the interannual trend found here is different to results of a contemporaneous 

boat-based survey study (Chapter III), which found that 2005 was the year with most porpoise 

sightings and in which there were no detections in 2006. This could be due to the area 

surveyed, as boat-based surveys were focused on the South coast of Galicia, and porpoises 

could have left those areas and moved to other ones (moving North to northern Galicia or 

South to Portugal). In addition such differences could arise if porpoises spent more time close 

to the coast in some years. In principle this could be related to prey distribution and 

abundance, and thus linked to year to year variation in the strength of upwelling. Although it 

seems that there is no relationship between years and high upwelling index. It could be related 

with the time needed to transfer the nutrients through the food web, as was found for 

Octopus vulgaris planktonic larvae (Otero et al 2009), with a significant increase in larval 

abundance and biomass with the upwelling relaxation. However, the time series is presently 

too short to investigate this. 

The increase of number of sightings during land-based surveys could mean that the population 

is growing. It is known that Galician porpoise population sex ratio is close to 1:1 (Read et al 

2012, Chapter IV), if it is assumed that half of the females are sexually mature (Read et al 

2012), and that there is an annual mortality rate of 18% (Read et al 2012), the population 

could grow a maximum of 7% (25%-18%), which is lower than the apparent increase seen in 

the present study (and indeed already assumes a pregnancy rate of 1.0 whereas most 

estimates for European populations are rather lower). Another reason that could explain the 

rise in sightings detected could be the movement of individuals from other areas such as 

Asturias or Portugal, or even from distant areas to areas closer to the coast in Galicia, but 

there are insufficient data from there at present to evaluate this possibility.  

In addition, a temporal trend during the day was found, which showed an increase in the 

number of sightings later in the day, as indeed was found before by Pierce et al (2010). The 

reason why more sightings were recorded later in the day could be due to boat traffic. It is 

known that porpoises tend to avoid boats (Culik 2004, personal observation).  Thus, when 

maritime traffic decreases at that time of the day, the animals could begin to use the areas 

closer to the coast.  

There was also a spatial trend in the number of sightings with more detections in Lugo and A 

Coruña (Northern stations), which is again broadly consistent with previous analyses (Pierce et 

al 2010), which found that the sightings were more frequent around Punta Roncadoira 

(between observation points 2 and 3 in this work), and Cabo Vilán (observation point 13). In 
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contrast, the peak found in that study in A Guardia (observation point 30, adjacent to the 

border with Portugal) was not detected here. This decrease in the number of sightings in the 

south of the study area could mean that porpoises are changing their distribution and are 

moving to northern areas of Galicia or indeed south to Portugal. It seems that Galician 

porpoises prefer areas with fewer and smaller rías, and avoid industrialized areas, such as the 

Rías of A Coruña, Pontevedra and Vigo. Also, one of the most important factors affecting 

porpoise presence was the presence of bottlenose dolphins, and they were detected mostly in 

those three rías.  

A striking feature of the oceanography of the Galician coast is the occurrence of upwelling (e.g. 

Fraga 1981, Prego and Varela 1998, Figueirias et al 2002). The interaction of a meridional 

density gradient with the slope and wind forcing generates a poleward flow in the western 

boundary region (Gil 2003) below the surface (Huthnance et al 2002, Mason et al 2006) that 

often extends to the surface during winter. Slope currents are stronger and more persistent 

than shelf currents and have an onslope tendency in mid depths (Pingree and Le Cann 1989). 

In Galicia, this current is referred to as the Iberian Poleward Current (IPC) (Peliz et al 2003). It 

was confirmed that the adjustment of a meridional density gradient to a meridional oriented 

slope is likely to be the central mechanism in the generation of IPC (Peliz et al 2003), that 

together with the topography creates surface features such as eddies along the slope. Eddies 

have been found to be important sources of food for fish, marine mammals, cephalopods and 

birds (Dower and Perry 2001).  

Upwelling conditions have been described as one of the most important variables influencing 

the presence of porpoises in California (Tynan et al 2005), Eastern North Sea (Skov and 

Thomsen 2008), and the German Bight (Gilles et al 2011). The present study suggests that in 

Galicia such conditions also have an important influence on the presence of porpoises, which 

reflects the presence of high productivity conditions. Porpoise detections increased when 

there were Eastern winds. Although upwelling is correlated with wind from North, along the 

Galician coast, those Eastern winds can also create conditions of upwelling in this area, 

increasing the productivity of the area. 

The depth of the eutrophic zone (ZEU) was significant in the models fitted. This zone is the 

depth range where the Photosynthetically Active Radiation (PAR) is sufficient to support 

photosynthesis (Kirk 2011). Thus, the highest values of ZEU indicate areas of high productivity 

(Haande et al 2011, Jin et al 2011, Khanna et al 2009). 
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Upwelling and primary productivity are related to higher trophic levels through the food chain. 

Highly productive areas of upwelling or eddies may be good for the development and 

aggregation of the most important prey of harbour porpoises in Galicia such as blue whiting, 

Trisopterus spp, silvery pout (Gadiculus argenteus) and Trachurus sp. (Pierce et al 2010, Read 

et al 2012) that can be found on the continental slope (blue whiting) and in shelf waters (the 

other species). Consumption of blue whiting implies foraging in slope waters. Porpoise 

distribution is likely to reflect foraging opportunities, but if the trends in distribution of blue 

whiting (ICES 2012) are compared with the ones of the distribution of sightings of porpoises, 

years with highest abundance of blue whiting are not related to years with lowest sightings, 

which would be expected if porpoises move to deeper water. By remaining close to food 

resources, porpoises may be able to more easily meet the energetic demands of maintenance, 

growth and reproduction. This is especially important in the case of mature females which 

have the additional costs of pregnancy and lactation that increase the energy requirements 

and may happen at the same time (Brodie 1995, Kastelein et al 1997, Read et al 1997, Read 

and Westgate 1997, Koopman 1998, Lockyer 2007, MacLeod et al 2007).  

There are three more environmental variables which were found to have an influence on the 

presence of porpoises along the Galician coast. More porpoises were detected in waters 

where depth was more variable, sea bed slope was greater and the continental shelf was 

narrower. These will be areas where deep waters occur close to the coast, highlighting the 

importance of the areas where the shelf is narrower, which was also found by Pierce et al 

(2010), who argued that this could indicate that porpoises habitually occupy deep waters in 

Galicia. Since then, several studies confirmed this, showing that in this area porpoises are seen 

in waters with depths between 50 - 100 m, with several detections in even 100 - 200 m 

(Spyrakos et al 2010, Fernández et al 2013, Chapter III). Seabed slope was found to influence 

porpoise distribution in other areas (Embling et al 2010, Isojunno et al 2012, Booth et al 2013). 

FInally, although the importance of depth is clear, the relationships are different depending on 

the area. In Northwest Scotland porpoises were found to have preference for waters between 

50 and 150 m depth (Marubini et al 2009), whereas in the Moray Firth Marine Protected Area 

they occurred in waters with a maximum between 10 to 35 m depth (although these were the 

sections of the study area with deepest water, Bailey and Thompson 2009). In Northern 

California, porpoise were most frequently seen over depths of 20 to 60 m and fewer porpoise 

than expected occurred at depths >60 m (Carretta et al 2001) while in the Bay of Fundy and 

Gulf of Maine, they were found most frequently in areas where depths range between 92 and 
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183 m (Read and Westgate 1997). It seems that preferred depths are a consequence of local 

conditions rather than being a consistent characteristic of porpoise habitat choice. 

This variation could be due to the diet of porpoises. The principal prey varies between areas, 

with relatively few different species in each one, which live in distinct habitats. For example, 

whereas in Galicia porpoises’ main prey are blue whiting, Trisopterus spp, silvery pout and 

Trachurus sp. (Pierce et al 2010, Read et al 2012), species mostly distributed in deep waters 

(Cohen et al 1990, Svetovidov 1986, Collete and Parin 1986, Smith-Vaniz 1986), in Scotland the 

main prey are sandeels (Ammodytidae) and whiting (Santos et al 2004), and in the Gulf of 

Maine it is herring (Clupea harengus) (Gannon et al 1998), which are found in waters of less 

than 200 m depth and generally are not present in the Galician waters (Whitehead 1985, Muus 

and Nielsen 1999, ICES 2012). 

 However it is not only “natural” conditions that seem to determine the distribution of 

porpoises. As mentioned before, porpoises were not detected inside the Rías, which are 

mostly located along the West and Southern coast of Galicia, and are more industrialized with 

more and bigger cities than other areas and where most bottlenose dolphin sightings occur. 

Although it is difficult to demonstrate cause and effect, since environmental differences, 

presence of bottlenose dolphins and anthropogenic impacts are potentially confounded, and 

areas with higher human population density were those with lower probabilities of detecting 

porpoises. 

The best models fitted explained a relatively low proportion of the deviance, especially in the 

spatiotemporal model that explained 17.2% of the deviance (11.6% due to the variables that 

affect the observers and 5.6% due to spatiotemporal variables), whereas the environmental 

model explained 22.7% of the deviance (11.6% due to the variables that affect the observers 

and 11.1 % due to environmental variables). Such low values of deviance explained are not 

unusual in ecological studies (e.g. Cañadas and Hammond 2006, Embling et al 2010, de Boer et 

al 2014). However, it remains difficult to disentangle the separate effects of environmental 

conditions, other species and anthropogenic impacts. Therefore, it is important to carry out 

more studies including collection of additional data, especialy environmental aspects, such as 

coast type, tides, upwelling index, mesoscale oceanographic features, but also others such as 

maritime traffic, fisheries, contamination, water quality. Also, the implementation of the land-

survey network with stations in the archipelagos of Cíes and Ons, and Sálvora Island, where 

harbour porpoises have been regularly detected, would help to establish if they are important 

areas for the species or not. This could not be done until now because the access to the islands 
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is difficult especially in winter and is controlled as they belong to the Parque Nacional 

Marítimo Terrestre das Illas Atlánticas de Galicia and have been defined as a Special Area of 

Conservation (SAC) including several species of amphibians, birds, fish, invertebrates, 

terrestrial mammals, reptiles and plants, but not marine mammals specifically. Although those 

areas are already protected, if the area is important for the species, new evidence should be 

taken into account and the connections with other areas used by porpoises should be 

guaranteed. Finally, the development of other studies such as acoustic studies, which could 

increase the hours of monitoring and provide useful supplementary data about the 

distribution of the species even at night, or the implementation of observation effort in the 

areas detected as especially used by porpoises, will complement the information about the use 

of those areas by them, giving additional knowledge about this species. 

However, now the population of harbour porpoises in Galician waters is better known. When, 

where and in which environmental conditions they are present, are all important questions 

that need to be answered for their conservation. In Spain, although the Habitats Directive 

requires to the State Members the creation of SACs, no SAC has been established specifically 

for harbour porpoises. The results of this study provide essential information about this 

species in Galicia, which are important to keep in mind. For example, i) protected areas cannot 

be seasonal, because the species is present throughout the year, ii) one of the key areas in the 

Iberian peninsula, as is maybe also the case for the Gulf of Cadiz (Consejería de Medio 

Ambiente y Ordenación del Territorio 2015), is Galicia where there are four localities with 

particularly high occurrence of porpoises: Punta Candieira (Observation Point 6), Vilán and 

Touriñán Cape (Observation Points 13 and 14), Punta Remedios (Lira; Observation Point 16) 

and Faro de Corrubedo (Observation Point 19), iii) the main areas used by harbour porpoises 

and bottlenose dolphins are different, moreover, while a part of the bottlenose dolphin 

population was described as a resident population (Fernández et al 2011) porpoise population 

does not seem to behave in the same way, therefore the same SAC is not going to be useful for 

both species, only if it is big enough to cover those different areas. 

Protected areas can help the recovery/maintenance of the target species as well as benefitting 

the whole ecosystem (Cañadas et al 2005, Sergio et al 2006, 2008, Notarbartolo-di-Sciara et al 

2008). However, it has to be considered that with highly mobile species such as harbour 

porpoises, if detrimental impacts persist outside the boundaries of an SAC and, for example, 

impede porpoise movements between areas, increase their mortality, or reduce reproduction 

success, the conservation measures will finally not be effective.  
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In addition, cetaceans are defined as potential indicators for determining GES under the 

Marine Strategy Framework Directive (MSFD). Useful information can be obtained by the 

continuation of the land-based surveys. They will give the chance to detect variations in the 

ecosystems as the harbour porpoises are described as indicator species, through the analyses 

of their distribution and abundance.  Moreover, in the future, it could help to evaluate the 

success of conservation strategies in maintaining the population in good condition or if more 

effort has to be invested in conservation measures. 
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CHAPTER V 

Patterns and characteristics (length, sex, by-catch) of the 

strandings of harbour porpoise (Phocoena phocoena) in the North 

West Iberian Peninsula. 
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Abstract 

Strandings are an important source of information and biological samples which can provide 

useful insights into the conservation status of coastal cetacean populations. Harbour porpoise 

stranding data used in the current study (N=424) were recorded from 1990 to 2013 by 

Coordinadora para o Estudo dos Mamíferos MAriños (CEMMA) in Galicia, and from 2000 to 

2013 by Sociedade Portuguesa de Vida Selvagem (SPVS) in Portugal. The West Iberian 

Peninsula (WIP) is an area of high fishing effort, leading to a level of cetacean by-catch that is 

suspected to be unsustainably high. 

Strandings occur throughout the year. In Galicia porpoise strandings were more common in 

winter with a peak in March and in April; and in Portugal a peak in May was detected. There 

was a generally increasing trend in the number of stranded porpoises from North to South 

with peaks in subareas 5 and 9 (Ría de Pontevedra and Figueira da Foz). Numbers stranded 

also varied year to year, with a generally increasing trend over time. Areas with highest 

occurrence of strandings did not correspond to the areas with the highest number 

of sightings. Other factors may influence the presence of carcasses in the coast, e.g. seasonal 

currents and seasonal fishing activity. 

 The sex ratio among strandings was close to 1:1 although there was a slight preponderance of 

females in Portugal. Body length ranged from 81 to 202 cm (mean 146.7 cm), with Portuguese 

porpoises being larger than Galician, and females larger than males. Overall, 33.4% of the 

stranded porpoises had signs of by-catch, with a higher proportion in Portugal (56.0%) than in 

Galicia (26.2%). This difference may reflect differences in fishing gears used in each area but 

there results support the previous suggestion that the bycatch rate is unsustainably high and 

indicate that this differentiated and isolated harbour porpoise population of the WIP faces an 

important problem. As the WIP an area with a strong dependence on fisheries, it may 

be very difficult to eliminate cetacean by-catch. However, measures to reduce that problem 

and specific management plans for porpoises should be developed. 
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Introduction  

There are several reasons why European Seas are not considered to be in "good environmental 

status" (GES) (European Commission 2014): i) an increasing pressure from human activities, ii) 

39% of fish stocks in the Northeast Atlantic are still overfished and the situation is improving 

slowly, iii) pollution, iv) marine litter (mostly plastic), and, v) climate change. The Marine 

Strategy Framework Directive (MSFD) requires achievement of GES in EU marine waters by 

2020. There are many indicators defined to detect if that goal is achieved, some of which 

relate to the distribution, abundance and population dynamics of cetaceans. To assess the 

status of these populations, if conservation measures are needed and their effectiveness in the 

future, it is essential to have long time-series of relevant data to help identify baseline 

conditions (Evans et al 2005, ICES 2013). 

Collection of the necessary data on cetaceans is difficult because they are highly mobile 

species, spend a lot of time below the sea surface (e.g. Redfern et al 2006, Kiszka et al 2007) 

and away from areas used regularly by humans, especially those species occurring 

predominantly offshore. There are different techniques to study the presence, distribution and 

abundance of cetaceans, such as boat, aerial, land-based and acoustic surveys (for a review, 

see Evans and Hammond 2004). Another approach is the study of strandings, which can be of 

dead or live animals. They are an important source of information and biological samples. 

Stranding data collection has low costs comparing to field work at sea, even if necropsies are 

carried out, and data collected can be from a wide spatial and temporal range. In addition, for 

some countries, good historical data series exist. Strandings data can provide a good indicator 

of the species present in an area (Maldini et al 2005, MacLeod et al 2005, Pyeson 2010, 2011). 

Also, spatiotemporal trends in distribution, migrations, abundance and population dynamics 

(e.g. mortality rate) can potentially be detected (Sequeira et al 1996, López et al 2002, Siebert 

et al 2006, Ferreira 2007, Leeney et al 2008, Pikesley et al 2011, Ferreira et al 2012, Truchon et 

al 201), which could be related to human activities such as fishery by-catch or pollution (e.g. 

Jefferson and Curry 1994, Sequeira 1996, Siebert et al 1999, Bennet et al 2001, Jauniaux et al 

2002, Jepson et al 2003, Das et al 2004 b, Healters and Camphuysen 2009, Mahfouz et al 2014 

a, b), anthropogenic noise (Simmonds and Lopez-Jurado 1991, Frantzis 1998, Balcomb and 

Claridge 2001, Jepson et al 2003, 2005, Fernández et al 2004, 2005, 2012, Cox et al 2006), ship 

strikes (ACCOBAMS 2005, Panigada et al 2006, Wang et al 2006, IWC 2012) or climate change 

(MacLeod et al 2005). 
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The analysis of strandings also gives information about health (e.g. condition, diseases, 

parasites) and causes of mortality, and about life history in general (Lockyer et al 2001, Lockyer 

2003, Lockyer and Kinze 2003,  López 2003, Murphy 2008, Murphy et al 2009, Lopez et al 2012, 

Read et al 2012, Learmonth et al 2014) as well as other aspects of biology and ecology such as 

diet (e.g. Santos and Pierce 2003, Das et al 2003, Santos et al 2004, 2005, De Pierrepont et al 

2005, Tonay et al 2007, Aguiar 2013, Dunshea et al 2013), contaminants (e.g. Aguilar et al 

1999, Jepson et al 2005, Pierce et al 2008, Murphy et al 2010, Méndez-Fernández et al 2014 a, 

b) or genetics (e.g. Ju et al 2012, Amaral et al 2012 a, b, Defaveri et al 2013, Stockin et al 2013, 

Fontaine et al 2014). Monitoring strandings also makes it possible to detect any change in 

these characteristics (Lockyer and Kinze 2003, López 2003, Murphy 2008, Murphy et al 2009, 

López et al 2012, Read et al 2012, ICES 2013, Truchon et al 2013, Byrd et al 2014), and provide 

insights on the fitness and survival of the population. 

Nevertheless, it is important to keep in mind that strandings are an opportunistic source of 

information. Aside from possible variation in observer effort along the coast, which can affect 

the probability of beached animals being detected, environmental factors such as, winds, sea-

pressure gradients, tides, currents and/or bottom topography can affect the probability of 

dead cetaceans reaching the shore and stranding (Evans et al 2005, Leeney et al 2008, de Boer 

et al 2012, Peltier et al 2012, 2013). Previous studies have analysed the proportion of carcasses 

that strand by tagging by-caught animals or animals found floating in the sea. Results showed 

different but generally low stranding rates: none of four cetaceans tagged and released were 

reported on the coast of Southwest England (de Boer et al 2012), only 8 of 100 tagged animals 

reached land in the French Atlantic (Peltier et al 2012) and 5 of 23 in Galicia (Martinez-Cedeira 

et al 2011).  

Also, Peltier et al (2012) used the drift model MOTHY developed by MétéoFrance to link 

stranding locations to likely areas of origin, considering the effects of wind and tide but not 

general circulation or coastal currents. Their results suggest that only a small fraction of 

cetaceans that die over the continental shelf are stranded but conclude that stranding data 

could nevertheless provide relevant information on mortality at sea, relative abundance, 

species richness and distribution of cetaceans. 

This study is focused on the West Iberian Peninsula (WIP), which comprises Galicia (Northwest 

Spain) and Portugal. In Southern Galicia, beaches cover 13.8% of the coast, but the Northern 

coastline is mostly rocky and shallow. In northern Portugal, a rectilinear sandy coast extends to 

just north of the Nazaré Canyon, interrupted only by Cape Mondego. Further south, beaches 
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are replaced by cliffs which extend to Cape Raso, at the latitude of Lisbon (OSPAR 2000). The 

most irregular section of the WIP is Galicia, which contains many rías. The rías are flooded 

tectonic valleys of moderate depth. At mouths of the Rías Baixas (the rías of Vigo, Pontevedra 

and Arousa, in south Galicia) there are the archipelagos of Cíes and Ons, and Sálvora Island. 

The rías form an intrinsic component of the “shelf system” (Doval et al 1998), the 

oceanographic characteristics of which are driven by large scale and local winds, especially 

during summer when freshwater input is at its minimum.  

The WIP is characterized by a relative narrow shelf of 20 - 35 km wide and 100 – 200 m depth, 

with two principal currents present: i) the Portuguese Current, a broad equatorward current, 

and ii) the Navidad Current (Pingree and Le Cann 1989), a branch of the Iberian Poleward 

Current IPC that enters the Cantabrian Sea. The area is also the northern limit of the NW 

African upwelling system. Upwelling on the Galician and Portuguese shelf is seasonal and is 

caused by northerly winds during summer and Eckman transport (e.g. Fraga 1981, Prego and 

Varela 1998, Figueiras et al 2002). Upwelling is also associated with the IPC (Alvarez et al 

2003), and the interaction of coastal upwelling and strong outflow from the rías generates 

eddies in the slope poleward flow, which could contribute to breakdown of the Iberian Polar 

Current (IPC) during the start of the upwelling regime (Torres and Barton 2007). In the North 

WIP, eddies are also a topographic feature of the coast in areas such as the Estremadura 

Promontory, the Aveiro Canyon and the Porto Canyon (Peliz et al 2003). Results of a 10-year 

simulation study of Lagrangian transport pathways, showed that particles released in surface 

waters (1 - 10 m) from Azores, Madeira and Canary Islands follow a westward propagation of 

the Canary Current, while particles released at the Iberian coast travelled southwards probably 

due to the Portugal Current (PoC) which joins the North Atlantic Current. However, particles 

released along the western coast of Galicia travelled eastward toward the Cantabrian Sea, 

probably due to the Navidad Current (Sala et al 2013). The rías form a semi-closed system 

because of the downwelling winds, the presence of the poleward flow and the upwelling that 

takes place inside them (Torres and Barton 2007). 

These oceanographic processes are important especially due to the associated enrichment of 

the waters, which favours biological production (e.g. Cabanas 1999, Âmbar 2002), and 

therefore may be good for the development and aggregation of fish and, through the food 

chain, for marine mammals and birds. Indeed, the WIP is a high biodiversity area with almost 

400 species of fish (Bañón et al 2010) and over 75 species of cephalopods (Guerra 1992). Also, 

at least 22 species of cetaceans have been recorded in Galicia (Penas-Patiño and Piñeiro 1989, 
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López el al 2002, López 2003, Covelo et al 2009) and 16 species of cetaceans in Portugal (Brito 

et al 2009, Ferreira et al 2012), with the common dolphin (Delphinus delphis) the most 

common species followed by bottlenose dolphin (Tursiops truncatus) (in Galicia) or harbour 

porpoise (Phocoena phocoena) (in Portugal).  

The area’s resources are used by fishermen and cetaceans and it is an area of high fishing 

effort (Sequeira et al 1992, EUROSTAT 2010), leading to a level of cetacean by-catch that is 

suspected to be unsustainably high (López et al 2012, Read et al 2012, Goetz et al 2014). 

In the study area there are two strandings monitoring networks. In Galicia, strandings began to 

be recorded from 1973 by the Sociedade Galega de Historia Natural (SGHN), with recording 

becoming systematic in 1990 with the creation of the Coordinadora para o Estudo dos 

Mamíferos Mariños (CEMMA) which, since 1999, has had an agreement with the Xunta de 

Galicia for the management of the official stranding network for marine mammals and turtles 

in Galicia. In Portugal, the National Stranding Network, which joined the Aquário Vasco da 

Gama, Museu do Mar (Cascais) and the Autoridade Marítima, was created in 1977. At the end 

of the 1980s, the coordination passed to the Serviço Nacional de Parques, Reservas e 

Conservação da Natureza (currently ICNF). Due to the high number of strandings along the 

coast of central Portugal, in 2000 a local stranding network was created by the Universidade 

do Minho (UM) in collaboration with the Sociedade Portuguesa de Vida Selvagem (SPVS) and 

the Instituto da Conservação na Natureza e da Biodiversidade (ICNB), belonging to the 

National Stranding Network managed by the ICNF. Since 2008, this local stranding network for 

marine mammals, turtles and birds, has also worked in the North part of Portugal and the 

Algarve area. 

Stranding data recorded in Galicia and Portugal were useful to begin the validation of the 

status of P. phocoena in that area with previous studies as to provide information on the 

biology and ecology of porpoises in this area. (Sequeira 1996,  Lens 1997, Lopez 2003, Read et 

al 2012, Lopez et al 2012). In the present study data from 1990 to 2013 by CEMMA in Galicia, 

and from 2000 to 2013 by SPVS in Portugal, for harbour porpoise, were analysed to detect i) 

spatiotemporal patterns and the possible presence of peaks (locations, years, months) in 

strandings, ii) changes in length composition and sex ratio, and iii) proportion of porpoises by-

caught. In addition, the analysis aims to quantify the effect of several variables such as year, 

month, location (SA), body condition (bc), length, sex, by-catch on length composition, sex 

ratio and by-catch rate and to compare trends in strandings with those seen in sighting data 

from boat and land-based surveys. 
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The intent is to increase our knowledge on WIP porpoises. The comparison of the results with 

sighting data will highlight if any increase/decrease in the number of strandings may be due to 

differences in local abundance. Results on length composition and sex ratio will also help to 

describe the structure of the population in this area.  

Understanding variation in population structure in time and space, together with variation in 

by-catch, is especially important to study in this species, which is protected by several 

international agreements and directives such as ASCOBANS (Agreement on the Conservation 

of Small Cetaceans of the Baltic, North East Atlantic, Irish and North Seas), ACCOBAMS 

(Agreement on the Conservation of Cetaceans in the Black Sea, Mediterranean Sea and 

Contiguous Atlantic Area), and the Habitats Directive. The Iberian population has been 

described as genetically isolated from porpoises in the rest of Europe (Fontaine et al 2007, 

2014, see also Chapter II). Also, as a top predator and a long-lived species, porpoises feed at 

high trophic levels and thus accumulate relative high levels of contaminants and, as the 

smallest resident cetacean species, carrying relatively small energy reserves, it may be 

particularly vulnerable to the effects of environmental changes (MacLeod et al 2014). The 

findings will be relevant for the implementation of the MSFD and for the conservation of the 

marine environmental and the species in WIP. 
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Materials and methods  

Stranding data collection and study area. 

Since 1990 the NGO Coordinadora para o Estudo dos Mamíferos Mariños (CEMMA) has 

recorded marine mammal and sea turtle strandings occurring on the Galician coast, but the 

coverage of the stranding network has been more consistent since 1999 because of the 

agreement with, and funding from, the Xunta de Galicia, the regional government. In Portugal, 

in the North, Central region, and Algarve area, the organisation Sociedade Portuguesa de Vida 

Selvagem (SPVS) has worked on strandings since 2000. Samples obtained are stored (in sample 

banks) for further biological studies (e.g. diet, life history, contaminants, genetics, etc) and 

annual reports are sent to the Galician and Portuguese Governments, respectively.  

Strandings are reported to a dedicated phone number, available 24 - 7, and reports came from 

a variety of sources, including the public and local municipalities.  

Cetaceans were considered stranded if they were found on the shore, either dead (either on 

land or in the water) or alive but in need of human intervention. Carcasses brought ashore by 

fishermen were also included in the study (seven in Galicia). 

For each stranding, standard data (e.g. date, place of stranding/geographic coordinates, who 

reported the stranding, species, length, sex, body condition, cause of death such as by-catch, 

pneumonia/septicaemia, trauma, when possible) and additional data (e.g. morphometrics, 

samples collected, presence of parasites, by-catch signs, mutilations) were collected when 

possible according to established protocols (Kuiken and García Hartman 1992).  

For the study of fisheries interactions, animals found in good condition were classified as i) not 

by-caught; ii) possibly by-caught, if there were suspicious lesions that could not be identified 

definitively as due to by-catch; iii) by-caught, animals with evidence of entanglement lesions, 

mutilations, or which were landed by fishermen; or, iv) unknown. When possible, the fishing 

gear was recorded (gillnets, trammel, trawl nets and seine). Due to carcass decomposition 

(body condition 4 and 5), some evidence of by-catch will have been lost. Because of this and 

the absence of signs in some cases or presence of ambiguous signs, the number of animals by-

caught may be under-estimated. Also, it may be an overestimation due to dead animals being 

caught in nets and acquiring by-catch signs post-mortem, or those animals brought by 

fishermen to land.  
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If some or all this information was not recorded, cause of death was classified as NA (not 

available). 

Data analysis and modelling. 

Stranding data from January 1990 to December 2013 from Galicia and from April 2000 to 

December 2013 from Portugal were compiled from the CEMMA and SPVS databases. 

For analyses, each stranding was considered a separate event. For harbour porpoises, no mass 

strandings (i.e. stranding of 2 or more individuals, excluding mother–calf pairs of the same 

species, at the same location on the same day) or mother-calf pairs were reported. 

For statistical analysis of spatial patterns, the coastline has been divided into 10 sub-areas that 

are shown in Fig. 39. 

 

Figure 39. Distribution of the harbour porpoise strandings along the coasts of Galicia and 

Portugal. Black dots represent each stranding, pie charts represents the proportion of 

strandings in each sub-area filled in dark grey . 
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Animals without the head or fluke (due to amputation, predation or decomposition) were not 

considered for the analyses of body length trends. Data from porpoises with body condition of 

4 and 5 were also not considered for analyses of by-catch, length or sex. 

A chi-squared analysis was used to compare monthly trends between Galicia and Portugal. 

Due to the differences in strandings datasets from the two areas, for most analyses data were 

separated into two groups: i) Galician data from 1990 to 2013; and, ii) data from Galicia and 

Portugal from 2000 to 2013. 

For the analysis of the effects of different covariates (year, month, sub-area, body condition, 

length, sex and by-catch) on harbour porpoise strandings, Generalised Additive Models (GAMs) 

were fitted as they permit non-normal distributions of response variables (discrete or 

continuous) and non-linear relationships between covariates and the response variable, which 

are described with non-linear smooth functions (Hastie and Tibshirani 1990).  

In this study, number of strandings was first modelled as a function of year, month and sub-

area (SA) (all fitted as smoothers) to quantify the spatiotemporal trends in porpoise strandings. 

Two-way interactions between effects of subarea, year and month were also investigated. A 

Poisson distribution was selected for the response variable (number of porpoise strandings) 

and a log link function was used.  

Secondly, a model was fitted to quantify the effects of year, month, SA (as smoothers), by-

catch and sex (as factor) on body length. In this case, the distribution selected for the response 

variable length was Gaussian with an identity link function. The same explanatory variables 

(except for sex) were used to study the sex of porpoises stranded, with the effect of length 

also included (as a smoother); in this case the distribution for the response variable was 

binomial with a logit link function. Finally, a model was fitted to quantify the effects of year, 

month, SA, length, body condition (as smoothers) on occurrence of by-catch. The response 

variable was transformed into presence/absence assuming that the presence of signs of by-

catch implies that the animal was caught by a fishing gear, then presence included categories 

ii) possibly by-catch and iii) by-catch; therefore, the distribution used was Binomial with a logit 

link function. 

To describe the characteristics of the porpoises stranded the effects of year, month, SA, 

bycatch and sex on body length; the effects of year, month, SA, bycatch and body length on 

sex and effects of year, month, SA, bycatch and sex on body length; the effects of year, month, 

SA, sex and body length on bycatch, were analysed. 
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Covariates SA and body condition were fitted as smoothers and degrees of freedom (k) were 

limited to k=4 and k=3 respectively, to allow a smooth curve to be fitted as they have few 

unique values (Zuur et al 2007). 
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Results  

Spatiotemporal trends in Galicia from 1990 to 2013. 

There is variation between years in the number of strandings of harbour porpoises in Galicia 

(Figure 40). The year with most strandings was 1999 and the one with least was 2001. The 

mean is 10.12 strandings per year (S.D. 4.68).  

 

Figure 40. Number of porpoise strandings per year in Galicia (white bars) and Portugal (black 

bars). The absence of data from Portugal before 2000 is due to the beginning of the Stranding 

Network in that year. 

Differences between months were also detected, with a lower number of strandings from May 

to October. The mean number of strandings per month per year during that period was 1.41 

(S.D. 7.8), for the remaining months (from January to April, November and December) the 

mean number of strandings per month per year was 1.52 (S.D. 0.45). Most strandings were 

detected in March and April, and the least was in September. 

If the number of strandings is analysed by sub-area (SA), it increases from North (SA.1) to 

South (SA.6), with the largest number of strandings found in SA.5. 
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Model 

Explanatory variables 

Desv. Expl. AIC 
Year 

YEAR, by = 
as.factor 
(MONTH) 

YEAR, by = 
as.factor(SA) 

Month 
as.factor 
(MONTH) 

MONTH, by = 
as.factor(SA) 

SA 
as.factor 

(SA) 

Y1~ 1 + s(YEAR) + s(MONTH) + s(SA, k = 4) 
   

***, ∩U 
(4.55) 

  

***, + 
(2.39) 

 
11% 1393.92 

Y2 ~ 1 + as.factor(MONTH) + s(YEAR, by = as.factor(MONTH)) + s(SA, k = 4) 
    

*** 
 

***, + 
(2.39) 

 
19% 1389.63 

      January 
*, + 
(1) 

        
     April 

** 
(7.75) 

    
 

   
     June 

· 
(3.83) 

    
 

   
     October 

* 
(4.43) 

    
 

   
    December 

**, - 
(1) 

    
 

   
Y3 ~ 1 + as.factor(SA) + s(YEAR, by = as.factor(SA)) + s(MONTH) 

   

***  
(4.55) 

   
*** 17% 1377.68 

     SA.2 
  

·, +  
(1) 

       
      SA.3 

  

**  
(8.75)  

   
 

  
     SA.5 

  

***  
(4.37)  

   
 

  Y4 ~ 1 + as.factor(SA) + s(MONTH, by = as.factor(SA)) + s(YEAR) 
       

*** 17% 1372.47 

      SA.2 
     

*  
(3.43) 

 
 

  
       SA.4 

     

***, U 
 (7.62) 

 
 

  
      SA.5 

     

***  
(6.78) 

 
 

  
      SA.6    

    

**, -  
(3.17) 

 
 

  

Table 16. GAM models fitted for stranding data from Galicia 1990 - 2003 to study spatiotemporal variation, and p-values. (Signif. codes:  0 '***' 0.001 '**' 

0.01 '*' 0.05 '.' 0.1 ' ' 1 ), trends ('+' positive, '-' negative, 'U' with a minimum, '∩' with a maximum) and degrees of freedom (in brackets).  Explanatory 

variables analysed are: year, month and sub-area (SA). 
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GAM models were fitted to quantify the effects of year, month, sub-area, body condition, 

length, sex and by-catch covariates on the number of strandings. In a first model (Table 16 

Model Y1), the covariates year, month and SA were included and we found that only year was 

not significant. In Figure 41 it can be seen that a negative trend was found in the number of 

strandings by month from March to August; and that the number of strandings increases from 

North (SA.1) to South (SA.5). However, the picture becomes more complicated when 

interactions between the covariates are considered. 

  

Figure 41. Graphs showing the effects of the significant covariates in the GAM fitted for Galicia 

to model the spatiotemporal trends in the number of strandings (year, month and subarea, as 

SA). Model Y1. Significant covariate a) month and b) sub-area (SA). 

In the model with year effects fitted separately for each month (Table 16 Model Y2, Fig.42), a 

significant effect of the year was found for several months. A positive trend was found in 

January, and a negative trend in December. Years with a higher proportion of strandings in 

April are 1990, 2004 and 2011. In June, the number of strandings decreased since from 1997 

until 2005, when it began to increase. A similar interannual pattern of strandings was found in 

October; the strandings decreased from 1999 until 2009. The covariate SA had a positive trend, 

with more strandings in southern than northern sub-areas. A significant effect on strandings 

was also found for the covariate month when fitted as a factor. 

 

 

 

a) b) 
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Figure 42. Graphs of the significant covariates of the GAM fitted for Galicia to model the 

effects of year, month and SA on porpoises strandings. Model Y2. a) Covariate year in January, 

b) covariate year in April, c) covariate year in June, d) covariate year in October, e) covariate in 

December, f) covariate sub-area. 

 

a) b) 

d) c) 

f) e) 
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Significant effects of year and month were seen for some sub-areas. When the effect of the 

year is modelled by sub-area (Table 16 Model Y3 Fig. 43) it can be seen there was a positive 

year on year trend in the number of strandings in SA.2. For SA.3 the number of strandings 

decreased markedly from 1994 to 1997. For SA.5, there was a peak in 2000, and lowest 

numbers were found around 2008. The effect of month in the model was similar to that in 

model Y1. A significant effect was also found when SA was fitted as a factor. 

 

 

Figure 43. Graphs of the significant covariate of the GAM fitted for Galicia to model the effects 

of year, month and SA on porpoise strandings. Model Y3. a) Covariate year in SA.2, b) covariate 

year in SA.3, c) covariate year in SA.5, d) covariate month. 

When modelling the effect of month in each sub-area (Table 16 Model Y4, Fig. 44), there is a 

maximum in the number of porpoise strandings in March, after which it decreases to a 

minimum in September. A similar distribution was found in SA.5, but reaching the minimum 

one month earlier (August). In contrast, in SA.4, there is a decrease in the number of 

b) a) 

c) d) 
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strandings from January to June when there is a minimum and a peak in July and October. In 

the southern area of Galicia (SA.6) a peak was seen in April. The effect of year was not 

significant in this model; in contrast, SA (as a factor) was highly significant. 

  

  

Figure 44. Graphs of the significant covariates of the GAM fitted for Galicia to model the 

effects of year, month and SA on porpoise strandings. Model Y4. a) Covariate month in SA.2, b) 

covariate month in SA.4, c) covariate month in SA.5, d) covariate month in SA.6. 

b) a) 

c) d) 
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Spatiotemporal trends in Galicia and North Portugal. 

For the period of 2000 - 2013, there is significant variation between years in the number of 

strandings of harbour porpoises both for Galicia and North Portugal (χ2=79.32, d.f.=13, 

p<0.001) (Fig. 40), with an evident increase in the number in 2011 and 2013 in Portugal. The 

year with the highest number of strandings in both areas is 2011 and the one with fewest is 

2001. The mean number of strandings per year is 9.93 (S.D. 4.76) for Galicia, 12.93 (S.D. 7.80) 

for North Portugal, and 22.86 (S.D. 11.2) for both areas together. This variation between years 

in the number of stranding of porpoises is in contrast to the one found for Galician strandings 

alone, and may mean that this variation is mainly due to Portuguese strandings. 

There is a clear difference between months for both areas (Fig. 45). In Portugal a minimum 

number of strandings was found in January and maximum in May, with more strandings in 

summer than winter. For Galicia, more strandings were recorded in winter than summer 

(χ2=40.20, d.f.=12, p<0.001). For Portugal, mean number of porpoise strandings per month 

was 15.08 (S.D. 6.89), and for the whole area it was 35.33 (S.D. 7.80).  

 

Figure 45. Number of strandings per month in Galicia (white bars) and Portugal (black bars) 

from 2000 to 2013. 

 

 



192 
 

Strandings increased from North (SA.7) to South (SA.9), with a great decrease for the last SA 

(Fig. 46). 

 

Figure 46. Number of strandings per Subarea (SA) in Galicia (white bars) and Portugal (black 

bars) from 2000 to 2013. 

Data from both areas from 2000 to 2013 were used to fit a GAM to study the effects of year, 

month and SA covariates on the number of porpoise strandings (Table 17 Model Y8, Fig. 47), 

and it was found that all covariates were significant. The number of strandings varied 

significantly between years, with a peak in 2003 and maximum number of strandings found in 

the three last years of the study; minimum numbers were found in 2001 and 2005. There is a 

peak at April. The number of porpoises stranded increases from North to South.  
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Model 

Explanatory variables 
Desv. 
Expl. 

AIC 
Year 

YEAR, by = 
as.factor 
(MONTH) 

YEAR, by = 
as.factor(SA) 

Month 
as.factor 
(MONTH) 

MONTH, by = 
as.factor(SA) 

SA as.factor(SA) 

Y8 ~ 1 + s(Year) + s(Month) + s(SA, k = 4) 
***, + 
(8.14) 

  

***, ∩ 
(3.21) 

  

***, + 
(2.29) 

 
11.40% 1688.12 

Y9 ~ 1 + as.factor(Month) + s(Year, by = as.factor(Month)) + s(SA, k = 4) 
    

*** 
 

***, + 
(2.29) 

 
18.70% 1674.69 

      January 
 

*, + 
(1) 

        
      April 

 

* 
(6.71) 

  
 

 
 

   
     May 

 

**, + 
(1) 

  
 

 
 

   
      June 

 

***, + 
(1) 

  
 

 
 

   
       July 

 

*, + 
(1) 

  
 

 
 

   
      October 

** 
(3.35) 

  
 

 
 

   
      November 

* 
(6.16) 

  
 

 
 

   Y10 ~ 1 + as.factor(SA) + s(Year, by = as.factor(SA)) + s(Month) 

   

***, ∩ 
(3.21) 

   
*** 24.10% 1594.72 

      SA.2 

      

., + 
(1.63) 

         SA.4 

   
 

  

. 
(4.37)  

        SA.5 

   
 

  

*** 
(8.68)  

        SA.7 

   
 

  

*** 
(7.27)  

        SA.8  

   

***, ∩  
(3.21) 

  

**, + 
(1) 

   

Table 17. GAM models fitted for stranding data from Galicia and Portugal 2000-2003 to study spatiotemporal variation, and p-values (Signif. codes:  0 '***' 

0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ), trends ('+' positive, '-' negative, 'U' with a minimum, '∩' with a maximum) and degrees of freedom (in brackets). 

Explanatory variables analysed are: year, month and sub-area (SA). 
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Model 

Explanatory variables 

Desv. 
Expl. 

AIC 
Year 

YEAR, by = 
as.factor 
(MONTH) 

YEAR, by = 
as.factor(SA) 

Month 
as.factor 
(MONTH) 

MONTH, by = 
as.factor(SA) 

SA as.factor(SA) 

      SA9 

   

***, ∩  
(3.21) 

  

**, + 
(1) 

   
Y11 ~ 1 + as.factor(SA) + s(Month, by = as.factor(SA)) + s(Year) 

***, +  
(8.14) 

       
23.80% 1596.67 

      SA.2 
     

·, - 
 (1) 

    
      SA.4  

    

***, U  
(2.07) 

    
      SA.5  

    

**  
(8.55) 

    
      SA.6  

    

***, - 
 (4.16) 

    
      SA.8  

    

***, ∩  
(2.34) 

    
      SA.9  

    

***, ∩  
(3.49) 

    
     SA.10          

·, -  
(1)         

           

Table 17. Continued. 
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Figure 47. Graphs of the significant covariates of the GAM fitted to model the spatiotemporal 

trends of strandings in Galicia and North Portugal from 2000 to 2013. Model Y8. a) Covariate 

year, b) covariate month, c) covariate sub-area (SA). 

The model with year effects fitted separately for each month for the whole area (Table 17 

Model Y9, Fig. 48), showed a significant difference in the number of stranding between years 

for several months. There was a positive trend in January, May, June and July. In April, the 

number of strandings increased in 2011 after which there was a highly significant decrease in 

the last two years. In October, there was a minimum in the number of strandings between 

2008 and 2010. In November high variation was seen, with significant differences between 

maxima (2002 to 2003, 2008 to 2009) and minima (2005 to 2006, 2011). Also, there was a 

positive effect in SA with an increase in the number of strandings of porpoises from North to 

South until SA.7. Month, fitted as a factor, had a significant effect on the strandings. 

 

b) a) 

c) 
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Figure 48. Graphs of the significant covariates of the GAM fitted for Galicia and North Portugal 

to model the effects of year, month and SA on porpoise strandings. Model Y9. a) Covariate 

year in January, b) covariate year in April, c) covariate year in May, d) covariate year in June, e) 

covariate year in July, f) covariate year in October, g) covariate year in November, h) covariate 

sub-area (SA). 

f) 

a) 

d) c) 

b) 

e) 
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Figure 48. Continued. 

Significant effects of year and month on number of porpoise strandings per sub-area were also 

seen for data from Galicia and Portugal (Table 17 Model Y10 and Y11, Fig. 49 and 50). The 

model fitting the effect of the year by sub-area (Table 2 Model Y10, Fig.49) showed a positive 

trend in SA.2, SA.8 and SA.9 over the study period. In SA.5, 2005, 2008 and 2012 were the 

years with least number of strandings. In SA.7 the number of porpoises stranded increased 

from 2009 until 2011. Month was found to have a significant effect with the same monthly 

pattern as in model Y8. 

   

Figure 49. Graphs of the significant covariates of the GAM fitted for Galicia and North Portugal 

to model the effects of effects of year, month and SA on porpoise strandings. Model Y10. a) 

Covariate year in SA.1, b) covariate year in SA.4, c) covariate year in SA.5, d) covariate year in 

SA.7, e) covariate year in SA.8, f) covariate year in SA.9, g) covariate month. 

h) g) 

b) a) 
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Figure 49. Continued. 

 

 

d) c) 

f) e) 

g) 
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Figure 50. Graphs of the significant covariates of the GAM fitted for Galicia and North Portugal 

to model the effects of year, month and SA on porpoise strandings. Model Y11. a) Covariate 

month in SA.2, b) covariate month in SA.4, c) covariate month in SA.5, d) covariate month in 

SA.6, e) covariate month in SA.8, f) covariate month in SA.9, g) covariate month in SA.10, h) 

covariate year 

b) a) 

d) c) 

e) f) 
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Figure 50. Continued. 

The model Y11 (Fig. 50) analysed the effect of the month by sub-area. A negative trend was 

seen in SA.2 and SA.10, also a significant negative trend was detected in SA.4 until July. In SA.5 

there was a minimum number of strandings in August. In SA.6 there was a negative trend since 

April. In SA.8 and SA.9 there was more number of strandings in late spring and early summer. 

Finally, there was a positive general trend between years, with a peak in 2003. For both 

models Y10 and Y 11, there was a significant effect of SA as nominal. 

Trends in Length and Sex in Galicia from 1990 to 2013. 

Porpoises found stranded in Galicia were from 81 cm to 202 cm length (Fig. 51), with a mean 

length of 145.56 cm (S.D. 25.84). A total of 60 individuals had the head or fluke amputated, so 

the length was not used. Also, 20 individuals with body condition 5 were not used as the 

length was not available or could not be assumed to be accurate.  

The percentages of males and females found were similar: 45.87% were females, 44.50% were 

males, and 9.63% were animals for which sex was not identified. In addition, for 3 animals the 

sex was not available and 22 individuals had body condition 5. 

 

h) g) 



201 
 

 

Figure 51. Number of strandings in different length classes in Galicia (black line), Portugal (grey 

line) and total (dash line). 

Different covariates were fitted using a GAM to analyse the length of the porpoises stranded in 

Galicia (Table 18 Model Y5; Fig. 52): sex and by catch as factors; and year, month, SA and body 

condition as smoothers (with k=4 for SA and k=3 for body condition). Sex was found to have a 

significant effect, with males smaller than females (mean length for females: 153.03 cm (S.D. 

27.35), males: 136.95 cm (S.D. 22.26)), and no significant effect was found for by-catch. A 

significant decrease of the length of the animals was seen through the years. A negative trend 

was also found at the beginning of the year, with a minimum number of strandings in May. 

Animals found in worse body condition were larger than animals found fresh. 

The effects of year, month, SA and by-catch on sex were modelled (Table 18 Model Y6), but 

significant effects were not found for any of them. 

Trends in Length and Sex in Galicia and North Portugal from 2000 to 2013. 

Porpoises found stranded in all the studied area were from 81 cm to 202 cm length (Fig. 51), 

with a mean length of 146.66 (S.D. 25.49). A total of 72 individuals had some amputation that 

affected the measurement of the length and 33 were with body condition 5 and thus were not 

used. In Portugal, animals were from 84.5 cm to 202 cm length, with a mean value of 147.78 

cm (S.D. 25.16). 
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Model 
Explanatory variables 

Year Month SA Length 
as.factor 

(SEX) 
BC 

as.factor 
(By_Catch) 

Desv. 
Expl.  

AIC  

Y5 ~ 1 + as.factor(SEX) + as.factor(By_Catch) + s(YEAR) + s(MONTH)  + s(bc, k = 3) 
***, - 
(1.64) 

*, U 
(3.23) 

  
*** 

***, +  
(1) 

 
35% 1316.41 

Y6 ~ 1 + as.factor(By_Catch) + s(YEAR) + s(MONTH) + s(SA, k = 4) 
       

1.48% 299.65 

Y7 ~ 1 + as.factor(SEX) + s(YEAR) + s(MONTH) + s(SA, k = 4) + s(LENGTH) + s(bc, k = 3) 
     

*  
(1.86) 

 
12.3% 160.31 

          
Y12 ~ 1 + as.factor(SEX) + as.factor(By_Catch) + s(YEAR) + s(MONTH) + s(SA, k = 4) + s(bc, k = 3) 

 

*, U 
(1) 

***, + 
(2.02) 

 
*** 

**, + 
 (1) 

 
22.80% 1871.74 

Y13 ~ 1 + as.factor(By_Catch) + s(YEAR) + s(MONTH) + s(SA, k = 4) 
       

1.73% 388.44 

Y14 ~ 1 + as.factor(SEX) + s(YEAR) + s(MONTH) + s(SA, k = 4) + s(LENGTH) + s(bc, k = 3) 
  

*, +  
(1) 

  

*** 
 (1.92) 

 
25.2% 237.15 

          

Table 18. GAM models fitted to stranding data from Galicia 1990-2013 (Y5, Y6, Y7) and Galicia and Portugal 2000 - 2013 (Y12, Y13, Y14), to model length (Y5, 

Y12), sex (Y6, Y13) and by-catch (Y7, Y14), and p-values (Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ), trends ('+' positive, '-' negative, 'U' with a 

minimum, '∩' with a maximum) and degrees of freedom (in brackets). Explanatory variables analysed are: year, month, sub-area (SA), length, sex, body 

condition (bc) and by-catch. 
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Figure 52. Graphs of the significant covariates of the GAM fitted for Galicia to model the length 

of stranded porpoises (bc, body condition). Model Y5. a) Covariate year, b) covariate month, c) 

covariate body condition. 

The percentages of males and females in the whole area were the same (44.79% each) and 

10.42% of animals were of undetermined sex. In addition, for 5 animals the sex was not 

available and 45 individuals were of body condition 5. In Portugal, fewer females (43.37%) 

than males (45.18%) were found (11.45% without sex determined). 

The same covariates as used in Galicia were fitted using a GAM to model the length of the 

porpoises stranded in the study area (Table 18 Model Y12; Fig. 53). Males were significantly 

smaller than females (mean length for females: 150.24 cm (S.D. 28.05), males: 144.28 cm (S.D. 

21.53) in North Portugal; mean length for females: 151.74 cm (S.D. 27.61), males: 147.28 cm 

(S.D. 23.74) in the total area. The effect of by-catch on the length of the animals stranded was 

not significant. Smaller animals stranded in May and June, and larger animals were found in 

b) a) 

c) 
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subareas of the South of the study area. As for Galicia alone, porpoises found in worse body 

condition were larger than animals found fresh. 

The effect of year, month, SA and by-catch on sex was also modelled (Table 3 Model Y13), but 

significant effects were not found for any of them. 

 

Figure 53. Graphs of the significant covariates of the GAM fitted for Galicia and North Portugal 

to model the sex of stranded porpoises (bc, body condition). Model Y12. a) Covariate year, b) 

covariate month, c) covariate body condition. 

b) a) 

c) 
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Trends in by-catch in Galicia from 1990 to 2013. 

In Galicia, 26.24% of the porpoises stranded were classified as by-catch. When a GAM was 

fitted to study the effects of year, month, SA, length, sex and body condition, only the last one 

was found to be significant (Table 18 Model Y7, Fig. 54), and showed that most porpoises by-

caught were found in body condition 2 or 3, which is not surprising as for animals in stage 4 

and 5 it is impossible to detect by-catch signs. Therefore, bycaught animals tend to be more 

fresh. 

 

Figure 54. Graphs of the significant covariate, bc (body condition), of the GAM fitted for Galicia 

to model by-catch on porpoises strandings. Model Y7. 

Trends in by-catch in Galicia and North Portugal from 2000 to 2013. 

The percentage of animals found by-caught or with signs of by-catch in the study area was 

33.42% and in Portugal 55.95%. In relation to the model fitted, only the covariates SA and body 

condition were significant (Table 18 Model Y14, Fig. 55). The number of by-caught porpoises 

had a positive trend from North to South. For body condition, similar results as for Galician 

data were found. 
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Figure 55. Graphs of the significant covariates of the GAM fitted for Galicia and Portugal to 

model by-catch on porpoises strandings. a) Covariate sub-area (SA), b) covariate bc (body 

condition).

a) b) 
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Discussion  

Strandings have been described as a good indicator of the species present in an area by several 

authors (Maldini et al 2005, MacLeod et al 2005, Pyeson 2010, 2011). Previous studies in 

Portugal and Galicia show that species of stranded cetaceans are comparable with species 

sighted (López et al 2002, 2004, 2012, Pierce et al 2010, Ferreira et al 2012, Santos et al 2012). 

Differences can be detected in the most sighted or stranded species. The presence of the 

coastal bottlenose dolphins means that the number of sightings of this species will be larger 

than for the most common species stranded in WIP, i.e. common dolphin (López et al 2002, 

2004). Common dolphin strandings are followed by bottlenose dolphin (in Galicia) or harbour 

porpoise (in Portugal) (López et al 2002, Ferreira et al 2012). Besides, strandings report the 

presence of species that are not sighted easily and then can be detected, such as false killer 

whale (Pseudorca crassidens), pygmy sperm whale (Kogia breviceps) and blue whale 

(Balaenoptera musculus) (Penas-Patiño and Piñeiro 1989, López et al 2002, López 2003, Covelo 

et al 2009, Ferreira et al 2012). 

The analysis of stranding data was carried out for Galicia and Portugal together, but also 

dividing the data in two groups: Galicia and Portugal. A total of 424 strandings of harbour 

porpoises were recorded in the whole study area (57.31% in Galicia and 42.69% in Portugal). 

Differences between years were found, and an increase in the number of strandings with time 

was detected, as was found in other areas of Europe (Jepson et al 2005, Leeney et al 2008, 

Pikesley et al 2011, Peltier et al 2013). The highest number of porpoises stranded was 

recorded in 2011 and the lowest was recorded in 2001, but it has to be kept in mind the 

difference of the range of years of each pool of data: Galicia from 1990 to 2012, Portugal from 

2000 to 2012. In Galicia the highest number of strandings was recorded in 1998, in Portugal it 

was in 2011. In Portugal, the peak in 2011 was also found in strandings by Ferreira et al (2012), 

but in the current study, which analysed more years of data, it was also found that 2013 had a 

high number of strandings.  

In some areas of Europe, seasonal variation was seen in the number of strandings. For 

example, around the North coast of Anglesey (Wales, UK) porpoise sightings increase in 

summer and decline in winter months (Shucksmith et al 2008), in Cardigan Bay, somewhat 

further south in Wales, porpoises were more abundant in winter (Simon et al 2010). Although 

those differences could be due to the presence of T. truncatus in Cardigan Bay. 



208 
 

Pikesley et al (2011) found a correlation between sightings and strandings of porpoises in 

Cornwall and South-west Britain and monthly patterns with peaks in winter. Leeney et al 

(2008) suggested that seasonal trends in strandings in the waters around Cornwall were 

related to changes in cetacean distribution and abundance, as well as in levels of fisheries by-

catch. Jepson et al (2005) described a seasonal difference in the distribution of harbour 

porpoise strandings between Wales and south-east England, data suggested a possible north-

south seasonal migration, and stranded harbour porpoise bycatches were most frequently 

recorded in south-west England comprising 40% of the total number of UK-stranded harbour 

porpoises diagnosed as bycatch. Jauniaux et al (2002) also found seasonal variation with the 

majority of strandings occurring during winter and early spring in Belgium and Northern 

France, and in the German North Sea Gilles et al (2009) detected a seasonal distribution of the 

species with important aggregation zones in offshore waters, a strong north-south density 

gradient in summer and a more even distribution in autumn. It would be expected that such 

seasonal variation in sightings would lead to a variation in the number of strandings. Siebert et 

al (2006) found that most strandings of porpoises along the shores of the German North Sea 

coast were from June to August, the same period when there was the highest number of 

incidental sightings of that species. Also, there was a strong seasonality of sightings in the 

German Baltic Sea, which were confirmed by aerial-surveys. 

The results of the current study showed that harbour porpoise strandings occur throughout 

the year as previous studies in Portugal and Galician coasts suggested, and that here there 

were also differences between months. Moreover, the difference between months were 

different between both areas, whereas in Galicia the peak of porpoise strandings were on 

March and May, in Portugal that peak was later in the year, in May and June (Fig. 45). In Galicia 

porpoise strandings were more common in winter with a peak in March (López et al 2002), 

which agrees with current study that also found other peak in April. In Portugal Sequeira 

(1996) found that strandings in 19th century and until December of 1994 are more numerous in 

winter and spring.  More recent study with data from January 2000 to December 2005 

(Ferreira 2007) showed a small peak in May and June, but without significant differences 

between months. In the present study, the peak in May was also detected but not the other 

one. When all strandings data are pooled together (Galicia and Portugal data of present study), 

the number of strandings is higher in winter than in summer. The analysis of land-based data 

(Chapter IV, Pierce et al 2010) did not find clear seasonal trends in the number of sightings, 

while results from boat-based surveys (Chapter III) showed higher number of detections in 

June and October.  
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Together with the temporal variation of the number of strandings, it is interesting to analyse 

the distribution along the coast of the study area. In the WIP, there is an increase in the 

number of porpoises stranded from North to South with two regions showing particularly high 

numbers of strandings: SA.5 and SA.9 (Fig. 56). In Galicia, López et al (2002) detected an 

irregular distribution of the strandings with 97% of the strandings concentrated in SA.5 and 

SA.6, in contrast, if the result is compared with sightings from land-based surveys, it is found 

that the SA.5 is the one with no sightings (Chapter IV, Pierce et al 2010). On the other hand, in 

Portugal if results are compared with boat-based surveys the area with most strandings is also 

the one with most sightings (Santos et al 2012), and agrees with the results of Sequeira (1996) 

that describes a regular pattern of the strandings, with 96.25% of them recorded along the 

northern and central zones. 

 

Figure 56. Areas showing particularly high numbers of strandings: SA. 5 and SA. 9. 

Therefore, although it is expected that areas with highest occurrence of sightings will be also 

the ones with highest number of strandings, here, and especially in Galicia, there may be other 

factors influencing the presence of carcasses in the coast, e.g. seasonal current. 
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Because of oceanographic features such as currents, tides, winds, sea-pressure gradients, 

bottom topography (Evans et al 2005, Leeney et al 2008, de Boer et al 2012, Peltier et al 2012, 

2013), decomposition of the carcasses by scavengers (Peltier et al 2012) or the sinking of the 

body, not all the dead animals arrive on the shore or they do so but in different areas from 

where they were living. There are several studies that tried to find out the proportion of 

cetacean deaths in the sea that result in strandings. Martinez-Cedeira et al (2011) worked with 

fishermen who tagged 23 by-caught dolphins and released them again into the sea. Of them, 5 

reached the shore and were found travelling distances between 27 and 320 km. De Boer et al 

(2012) tagged 4 animals in Southwest England, but none was recovered. Finally, Peltier et al 

(2012) tagged 100 animals in the French Atlantic but only 8 were found on the coast. They also 

studied how wind and tide affect the drifting of carcasses, to explain where they strand and 

where they come from. Conclusions include the fact that the number of animals that strand is 

a small fraction of the ones that die in the continental shelf, but they allow to assess mortality 

both numerically and spatially, relative abundance, species richness and distribution of 

cetaceans.  

In the West Iberian Peninsula (WIP), winds from North are predominant in summer and winds 

from South predominate in winter (Cabanas 1999). The orientation of the coast can have some 

impact in the difference of the number of strandings between areas. Coastlines oriented to the 

North are less influenced by winds from South and Southwest that are predominant in winter, 

than coastlines oriented to the West. The influence of the tidal current begin over the 

continental shelf around the 100 m isobaths, increases  closer to the coastline, and is most 

evident at the mouth of the rías and in some narrow areas between isles and the tidal range is 

of around 3 m (Cabanas 1999). And, also on coastlines with more sandy beaches, carcasses 

may remain for longer periods of time than in steep rocky areas. 

Other important factors that may affect to the behaviour of the carcasses in the sea are 

currents. In the WIP there is the Portuguese Current, a broad equatorward current and a 

branch of the Northward Iberian Poleward Current (IPC), called the Navidad Current (Pingree 

and Le Cann 1989), which enters the Cantabrian Sea.  



211 
 

 

Figure 57. Domain of computation (inside the solid thick line) and topography (isobaths 1000 

m and 200 m). The labels represent the main topographic features: EP, Estremadura 

Promontory; PC, Porto Canyon; and AC, Aveiro Canyon (from Peliz et al 2003). 

In addition, the upwelling system present along the Galician and Portuguese coast is a relevant 

factor. It is the northern limit of the NW African upwelling system and is seasonal, caused by 

northerly winds during summer and Eckman transport (e.g. Fraga 1981, Prego and Varela 

1998, Figueiras et al 2002). It is associated with the IPC (Álvarez et al 2003), and the interaction 

of coastal upwelling and strong outflow from the rías generates eddies in the slope with 

poleward flow. Eddies can be generated also by topographic features as happens in the 

Estremadura Promontory, the Aveiro Canyon and the Porto Canyon (Fig. 57, Peliz et al 2003). 

Those eddies could contribute to breakdown of the Iberian Polar Current (IPC) during the start 

of the upwelling regime (Torres and Barton 2007).  

Following the results of Sala et al (2013) carcasses of cetaceans dead at sea in the North West 

Peninsula will travel toward the east could reach the Cantabrian Sea due to the Navidad 

Current; on the other hand, carcasses in the rest of the West Peninsula coast will drift 

southwards probably due to the IPC. 
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Finally, storms are more frequent during autumn and winter and can influence strandings, 

both by carrying carcasses towards the coast due to southern winds and by causing the death 

of animals in poor condition (López et al 2002). 

  

Figure 58. The possible movements of cetacean carcasses stranding on the Iberian Peninsula 

coasts are: i) remain or be driven to offshore waters (black arrows) ii) be driven to Asturias and 

Galicia (red arrows), iii) to different areas of Galicia (orange arrows), iv) to Galicia and Portugal 

(blue arrows), v) to different areas of Portugal (yellow arrows), vi) to Portugal and Gulf of 

Cádiz, Gibraltar Strait or even North Africa (green arrows). 

Then, there is the possibility of cetacean carcasses stranding in different areas from where 

they live. In the study area there could be a “mixture” of carcasses originating from i) Asturias 

and Galicia, ii) different areas of Galicia, iii) Galicia and Portugal, iv) different areas of Portugal, 

and perhaps less plausibly, v) Gulf of Cádiz, Gibraltar Strait or even North Africa (Fig. 58). 

The oceanographic features present in the WIP coast and the situation of the WIP itself, 

reduce the probability of carcasses belonging to other areas reaching this coast. This is 

especially important in the case of harbour porpoises, the Iberian population of which has 

been described to be isolated from the rest of porpoises of the European waters and does not 
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show any population structure along the Spanish and Portuguese coasts (Fontaine et al 2007, 

2010, 2014, Alfonsi et al 2012, Chapter II).  

The probability of stranding is not the only important issue, the probability of finding the 

carcasses is important as well. Variation in the observation effort of the Stranding Networks 

can lead to temporal trends that do not reflect the distribution, abundance or mortality of the 

animals. Also, the increase of human habitation, coastal activities, presence of people in the 

beaches in summer and proportion of beaches in the coast line can have an effect. Since 1999 

in Galicia and 2000 in Portugal, the effort of strandings networks has stabilized, but in last 

years there may had been an ongoing increase of stranding reports by people present on the 

beaches due to the ease of access to the authorities. 

It is estimated that in Galicia up to the 25% of the animals that die in the sea reach the shore 

(Martinez-Cedeira et al 2011). Peltier et al (2012) estimated that, under the assumption that all 

dead carcasses float and drift, the probability that a stranded cetacean is discovered is only of 

12.9%. Therefore, a rather small proportion of dead animals are likely to be recorded and 

necropsied, but they can still provide relevant information on mortality at sea, relative 

abundance, species richness and distribution of cetaceans (Maldini et al 2005, MacLeod et al 

2005, Pyeson 2010, 2011, Peltier et al 2012), and in this case about the Iberian harbour 

porpoise population. 

Together with the information on presence/absence and spatiotemporal trends, strandings 

provide data about life history, diet, health, contaminants, genetics or cause of death (e.g. 

Siebert et al 1999, Jauniaux et al 2002, Santos and Pierce 2003, Das et al 2004 a, b, Santos et al 

2004, 2005, Murphy et al 2010, Lopez et al 2012, Read et al 2012, Stocking et al 2013, Fontaine 

et al 2014, Méndez-Fernández et al 2014 a, b). In this study the sex, body length and by-catch 

were analysed. 

In the WIP there was the same proportion of males as females (44.79% each), although the 

number of females was slightly lower in Portugal. The total body length ranged from 81 to 202 

cm with a mean length of 146.66 cm, the Portuguese porpoises being larger than Galician, and 

females larger than males. These sizes agree with previous studies that described the Iberian 

porpoises as larger animals than those of other areas (e.g. Donovan and Bjørge 1995, Sequeira 

1996, Lockyer 2003, Lopez 2003, Read et al 2012, Lopez et al 2012). The larger animals 

stranded in winter and carcasses were fresher when animals were smaller. This could be due 

to the presence of larger animals close to the coast in winter and then they strand more. Also, 
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the smaller porpoises strand fresher as they are close to the coast and they get the shore 

sooner than those in farther areas. 

Finally, the presence of by-catch evidences (absence of tail/flippers, presence of ropes, net 

marks) was also analysed. By-catch is one of the principal threats for small cetaceans, 

especially harbour porpoises (IWC 1994). In an area of high fishing effort such as WIP (Sequeira 

et al 1992, EUROSTAT 2010) interactions between fisheries and cetaceans has become aspect 

topic of great concern in recent years that has lead to the development of projects such as 

LIFE-INDEMARES and DIVULGANDO A PÉ DE MAR in Galicia and SAFESEA and LIFE MarPro in 

Portugal, as well as a number of publications on the topics (e.g. Lopez et al 2002, Fernández-

Contreras et al 2010, Ferreira et al 2012, López et al 2012, Read et al 2012, Goetz et al 2014). 

Relatively few cetacean by-catches are directly reported by fishermen, so this problem has to 

be studied with observers on board fishing boats, interviews or by diagnosis during the 

necropsies. In Galicia, the majority of the by-catches are common dolphins (23%), but other 

species such as harbour porpoises (22%) and bottlenose dolphins (14%) are also by-caught 

(López et al 2002, 2003). In the current study, it was found that on average 33.42% of the 

stranded porpoises had signs of by-catch with a higher proportion in the Portuguese coast 

(55.95%) than in the Galician (26.24%). That difference was also highlighted by Read et al 

(2012) who suggested that one of the reasons could be that gillnets are one of the gears that 

cause the highest rates of by-catch in Galicia whereas in Portugal, although gillnets are also 

problematic, the beach-seines are commonly used in North-Central Portugal and are thought 

to be one of the gears to which harbour porpoises are most vulnerable (Sequeira and Inácio 

1992, López and Valeiras 1997, López et al 2003, Ferreira 2007). Ferreira et al (2012) suggested 

that in Portugal the interaction with fisheries is the cause of 44 - 54% of the registered 

cetacean deaths, including 58% for porpoises (Ferreira 2007). 

Since the detection of signs of by-catch in carcasses depends on its state of decomposition and 

the amount of animals that reach the shore, the number of cetaceans that die due to 

interactions with fisheries is probably underestimated (although the proportion of mortalities 

that are due to bycatch may be accurately estimated). Despite that, the rates found suggest 

that the bycatch mortality is unsustainable, as suggested by Ferreira (2007), López et al (2012), 

Read et al (2012) and Goetz et al (2014) according to ASCOBANS (1997), which state that an 

anthropogenic removal of more than 1.7% of the best available population estimate 

abundance represents an ‘unacceptable interaction’.  
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This differentiated and isolated harbour porpoise population of the WIP faces an important 

problem, and as an area with a great socio-economic importance of fisheries, it is difficult to 

reduce and impossible to totally avoid by-catch. However, measures to reduce that problem 

and specific management plans for porpoises should be developed. Different measures can be 

developed in this area, such as i) the reduction of the use of gears that cause damage to 

porpoises or restriction of their use in areas where the species has high densities, ii) the use of 

acoustic deterrent devices (“pingers”), to alert porpoises of the presence to nets and iii) use of 

acoustic reflective nets, to reduce the likelihood of entanglement by modifying the behaviour 

of the animals and increment their ability to detect nets, which have been proved to be 

effective for porpoises in several areas (see Dawson et al 2013 for a review of the use of 

pingers, Trippel et al 2003, Larsen et al 2007), and can also reduce the economic cost of 

damage to nets and caught fish. However, it has to be kept in mind that such devices increase 

the noise in the sea and there is the possibility of causing the exclusion of the species from 

areas where they normally feed, or also can attract other cetacean species that are not afraid 

of acoustic signals or adapt them as bottlenose dolphins. Also there could be a reduction of 

the catch of the target species and ease of handling for fishermen of some modified nets 

(Trippel et al 2003, Larsen et al 2007, Dawson et al 2013, Goetz et al 2015).
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The present study aimed to improve the understanding of the status and ecology of the 

harbour porpoise, Phocoena phocoena, in the Iberian Peninsula.  Genetic approaches were 

used to examine population substructure and generalised additive models were used to study 

the habitat preferences of porpoises in Galician waters, NW Spain. In addition, seasonal and 

spatiotemporal trends of porpoise strandings, and by-catch presence were studied. The main 

results of this study can contribute to the determination of its conservation status and the 

planning and implementation of management plans for Iberian harbour porpoises.  

Population structure of the Iberian harbour porpoise 

The effective definition of protected areas and development of management plans as 

conservation tools require an understanding of the distribution, abundance and population 

structure of a species. This is especially important as the effect of a studied threat in an area 

can be over- or underestimated and can be a difficult issue in cetaceans. These species are 

highly mobile and live in an environment which has non-obvious geographic barriers to gene 

flow. Different studies have identified habitat discontinuities and changes in oceanographic 

features as influencing the spatial genetic structure of several delphinid species (e.g. Hoelzel et 

al 1998, Fullard et al 2000, Natoli et al 2005, Bilgmann et al 2007, 2008, Möller et al 2007, 

2011, Rosel et al 2009, Amaral et al 2012 a, b, Ansmann et al 2012, Gaspari et al 2013, Richards 

et al 2013). This may be the reason for the strong barriers to gene flow detected in porpoises 

in southern Bay of Biscay because of the warmer and deeper waters in that area which make 

this area unfavourable for porpoises (Fontaine et al 2007, Alfonsi et al 2012).  

In the present study, there was a clear genetic separation between the Iberian Peninsula 

population and the rest of Northeast Atlantic and Black Sea, and a connection with the 

population of West Africa. Also it was found that there was no significant pattern of population 

genetic structure in harbour porpoises along the Iberian Peninsula coast. All these findings 

confirm the suggestion of the isolation of the Iberian population (Tolley and Rosel 2006 

Fontaine et al 2007, 2010, Alfonsi et al 2012) which must be considered as one unique 

population and it is consistent with the assertion (Fontaine et al 2014) that they should be 

described as a separate subspecies, Phocoena phocoena meridionalis. 

The recognition of this isolated population is essential for porpoise conservation and to assess 

threats that can affect them. Such small populations are at risk if they become fragmented and 

migration between those new subpopulations decreases or is eliminated, and then the rate of 

loss of genetic diversity can increase through inbreeding and strong genetic drift, which can 
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increase the probability of demographic, environmental and genetic stochasticity. This can 

negatively affect the long-term viability of population fragments and therefore of the entire 

population.  

Frankham et al (2002), Frankham (2005) and Garner et al (2005) found that endangered 

species have lower genetic diversity than non-endangered equivalents, which increases their 

vulnerability and consequently increases probability of extinction (Mills and Smouse 1994, Lacy 

1997, Frankham et al (2002), Frankham (2005). Then, it is of concern that porpoises in Spain 

and Portugal had similar nuclear and mitochondrial genetic diversity, which were lower than in 

all the other populations except those in the eastern Mediterranean. 

Modelling the influence of different factors affecting the detection of harbour 

porpoises by observers in Galician waters  

For the conservation of a species it is important also to know the environmental conditions 

and areas where it is present to preserve the species and avoid any anthropogenic action that 

would negatively affect its survival. Habitat modelling techniques represent a potentially 

powerful tool for predicting cetacean distributions and understanding the ecological processes 

determining these distributions. This approach has already been used to incorporate this 

environmental variability into management applications, including improvement of abundance 

estimates, development of marine protected areas, and understanding cetacean–fisheries 

interactions (Redfern et al 2006). The current study is focused on the harbour porpoises of 

Galician waters. The aim was to improve knowledge of the environmental conditions and areas 

in which porpoises were seen with higher probability so that suitable areas for their 

conservation can be established with more accuracy. 

Cetacean data used in habitat modelling may come from both dedicated and opportunistic 

studies including ship, aerial, and acoustic surveys, as well as individual tagging studies 

(Redfern et al 2006). In this case, two sets of data were used: i) data recorded during targeted 

boat surveys carried out in Galician coastal waters during the years 2003 - 2010; and ii) data 

from land-based surveys carried out from a series of observation points along the coast to 

cover the study area as evenly as possible.  

In the first place and to avoid a possible underestimation of the population or even an 

incorrect interpretation of lack of sightings as absence in an area, it is important to identify the 

factors that can have some influence on the detection of cetaceans by observers and that 

should be taken into account. This is especially important for harbour porpoises, which are 
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difficult to detect due to their small in size, cryptic surfacing behaviour (it is relatively rare to 

see more than the dorsal fin and a part of the back), doing long dives between breathing 

sequences, spending little time at the water’s surface, and often solitary (Westgate et al 1995, 

Read 1999, Heide-Jørgensen 2013).  

As many other authors found before (Palka 1996, Evans and Hammond 2004, Weir et al 2007, 

Tynan et al 2005, Marubini et al 2009, Embling et al 2010, Pierce et al 2010, Booth et al 2013, 

Dolman et al 2013, de Boer et al 2014,) analysis of data collected by both methods (boat and 

land-based surveys) identified sea state to have an important influence into the probability of 

detection of porpoises, decreasing as Douglas and/or Beaufort increases. Also, the probability 

of detecting harbour porpoises increases with the area available for survey (i.e. the field of 

view), but in boat-based surveys there is a distance from the boat at which this trend is no 

longer seen and in land-based surveys there is a size of the area above which the observers will 

probably not scan all the area with the same effectiveness. 

The boat-based survey data also showed that the best boat speed for monitoring harbour 

porpoises is around 6 knots, in contrast to other studies in which this variable was the only 

survey variable studied that did not have an effect on the sighting rates (Booth et at 2013) or 

was important but only for one year of study with a decrease of the detection rate for boat 

speed higher than 6 knots (Embling et al 2010). Lower or faster speeds could decrease the 

probability of detecting porpoises. They can more easily avoid a slow travelling boat (Culik 

2004, personal observation). And at high speeds porpoises are less likely to be detected as 

they spend short time at the surface and cannot easily be seen if they are diving while the boat 

passes through the area where they are. At slow speeds another issue might be that slow 

porpoise sightings are duplicated as individuals could be detected several times as the boat 

passes. 

On the other hand, analysis of land-based survey data showed that time of observation was an 

important variable affecting the observers. It was found that the longer the time period of 

observation, the higher probability of detecting porpoises. Because the observers can get 

tired, there also should be a maximum duration of the observation period to avoid a decrease 

in the efficiency of the search, which in the current study begins approximately at 100 minutes 

(although it is also difficult to be precise about this as relatively few observations lasted longer 

than 100 minutes). Moreover, it was found that the presence of bottlenose dolphins has an 

important influence on the probability of detection of porpoises in Galician waters. There can 

be different reasons for this effect, for example the possible avoidance by porpoises of 
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competition and/or attacks (López and Rodríguez 1995, Alonso et al 2000, Mendez-Fernández 

et al 2013) or the distraction of observers from seeing porpoises due to the presence of 

bottlenose dolphins (Tursiops truncatus). However, it is important to note that an apparently 

negative relationship could arise simply due to the two species having different habitat 

preferences.  

Habitat preferences of harbour porpoises from Galician waters  

As was said before, for conservation purposes habitat modelling techniques are used 

frequently to predict cetacean distributions and understand the ecological processes that 

determine those distributions (Redfern et al 2006). 

In the present study, several environmental covariates were found to be important for the 

presence of harbour porpoises in Galician waters. Analysis of data collected by both methods 

found that the depth of the eutrophic zone (ZEU) was significant in the models fitted, with an 

increase in porpoise presence as values of that variable increased. This zone is the depth range 

where the Photosynthetically Active Radiation (PAR) is sufficient to support photosynthesis 

(Kirk 2011). Thus, the highest values of ZEU indicate areas of high productivity (Haande et al 

2011, Jin et al 2011, Khanna et al 2009). Another important variable found, in this case in boat-

based surveys, was chlorophyll concentration. High chlorophyll conditions again signify high 

productivity and can be related with the upwelling conditions that are usual in the study area 

(e.g. Fraga 1981, Figueiras et al 2002, Álvarez et al 2005, 2010, 2012). Upwelling conditions 

have been described as one of the most important variables influencing the presence of 

porpoises in California (Tynan et al 2005), Eastern North Sea (Skov and Thompsen 2008) and 

the German Bight (Gilles et al 2011).  

Previous work in the same area has provided contradictory results, although based on 

different methodology. Fernández et al (2013) found that porpoises sighted at sea were 

present at a wider range of CHL_a concentrations than other species during summer. A 

previous analysis of the first four years of coastal sightings data found that porpoises were 

seen most frequently adjacent to the coast in less productive areas (Pierce et al 2010) which 

was suggested to be a consequence of preferred water temperature and depth of the species 

and possibly of avoiding bottlenose dolphins (which were found in the most productive coastal 

areas). However, it should be noted that productivity was examined at a fairly coarse spatial 

scale, based on data from several transects along the coast.  
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In the present study, the positive relationship found is consistent with studies in other areas 

such as California (Tynan et al 2005), Bay of Fundy (Johnston et al 2005) and the North Sea 

(Gilles et al 2011).  Thus the results of the present study also suggest that porpoises were 

mostly detected in more productive areas. The increase of nutrients in the water due to the 

upwelling of nutrient-rich waters leads to an increase in primary productivity and therefore the 

chlorophyll concentration, and later to the secondary productivity which will lead a higher 

presence of porpoise prey in the area. However, as suggested by the apparently contradictory 

results mentioned above, it is also important to consider the spatial scale most relevant to 

porpoises. It would be expected that porpoises favour areas of high prey density and/or 

conditions in which high prey densities normally occur, but it is not obvious for example 

whether porpoises would be most sensitive to variations at a scale of a few metres, hundreds 

of metres or several kilometres. 

In land-based surveys, Easterly winds also appeared to be an important factor for the presence 

of porpoises, with an increase of porpoise detections when there were Easterly winds. Those 

winds can also create conditions of upwelling Galician coast which will allow to deeper and 

richer waters to emerge, increasing the productivity of the area, also in areas far from the 

coast (Torres et al 2003). 

On the other hand, during boat-based surveys porpoises were mostly seen in waters with 

medium temperatures (between 16 – 18°C), a normal situation during summer in Galicia 

(Fraga 1981, Triñanes et al 1993, www.meteogalicia.es) when the Eastern North Atlantic 

Central Water (ENACW), a salty subtropical water mass is upwelled. However, porpoises are 

often described to be mainly present in colder waters (e.g. between 5 - 14°C; Evans and 

Teilmann 2009). The importance for the Iberian harbour porpoises of the temperature found 

here suggests that they are sensitive to temperature variation. This could be due to the effect 

of temperature on porpoises itself, on porpoises prey or even just an effect due to the higher 

number of surveys or the best conditions to detect porpoises during that season. For the first 

reasons, an increase in water temperature, due to climate change, for example, in this area 

may be of concern as it is near the southern limit of harbour porpoise distribution, and 

perhaps close to its thermal limits (e.g MacLeod et al 2005, Learmonth et al 2006, Laidre et al 

2008, MacLeod 2009, Lambert et al 2011, 2014).  

Other environmental covariates that were found to be important for porpoises in the study 

area were related with seabed slope. Seabed slope has been found to influence porpoise 

distribution in several previous studies (Embling et al 2010, Isojunno et al 2012, Booth et al 
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2013). In boat-based surveys there were more sightings where seabed slope is facing to the 

South. This could be due to the presence of a slope current which is stronger and more 

persistent than shelf currents and has an onslope tendency in mid depths (Pingee and Le Cann 

1989). In the study area, this current is known as the Iberian Poleward Current (IPC) (Peliz et al 

2003) and the Portugal Coastal Counter Current (PCCC) (Ambar and Fiúza 1994). Often this 

poleward undercurrent causes the appearance of upwelling water, as happens in Galicia. 

Moreover, in the areas where slope faces south, this current can increase, becoming stronger 

at a local scale. For example, in the Horns Reef area (eastern North Sea), upwelling was 

described as the most important habitat characteristic for the distribution of porpoises that 

alternate between two upwelling cells depending on the direction of the tidal currents (Skov 

and Thompsen 2008). Also, in the German Bight, porpoises preferred areas with stronger 

currents and concentrated in areas where fronts are likely (Gilles et al 2011). Several studies 

found that porpoises were related with different sorts of currents, including tidal currents, 

although they are normally at a small spatial scale. 

From land-based surveys data, it was found that more porpoises were detected in waters 

where sea bed slope was greater, depth was more variable and the continental shelf was 

narrower. These will be areas where deep waters occur close to the coast, highlighting the 

importance of the areas where the shelf is narrower, which was also found by Pierce et al 

(2010), who argued that this could indicate that porpoises habitually occupy deep waters in 

Galicia. Since then, several studies confirmed this, showing that in this area porpoises are seen 

in waters with depths between 50 - 100 m, with several detections in 100 - 200 m (Spyrakos et 

al 2011, Fernández et al 2013). The importance of depth for harbour porpoises is clear, but the 

relationships are different depending on the area (Read and Westgate 1997, Carretta et al 

2001, Bailey and Thompson 2009, Marubini et al 2009), thus it seems that preferred depths 

are a consequence of local conditions rather than being a consistent characteristic of porpoise 

habitat choice. 

Effects of both upwelling conditions and depth on porpoise presence could be related with the 

diet of harbour porpoises in Galician waters. Upwelling and primary productivity are linked to 

higher trophic levels through the food chain. Highly productive areas of upwelling or eddies 

may be good for the development and aggregation of the most important prey of harbour 

porpoises in Galicia such as blue whiting, Trisopterus spp, silvery pout (Gadiculus argenteus) 

and Trachurus sp. (Pierce et al 2010, Read et al 2012) that can be found on the continental 



223 
 

slope (blue whiting) and in shelf waters (the other species), mostly in deep waters (Cohen et al 

1990, Svetovidov 1986, Collete and Parin 1986, Smith-Vaniz 1986). 

Other prey species dominate the diet of porpoises in other areas.  In Scotland the main prey 

are sandeels (Ammodytidae) and whiting (Santos et al 2004), and in the Gulf of Maine it is 

herring (Clupea harengus) (Gannon et al 1998), which are found in waters of less than 200 m 

depth and generally are not present in Galician waters (Whitehead 1985, Muus and Nielsen 

1999, ICES 2012).  

Porpoise distribution is likely to reflect foraging opportunities, because by remaining close to 

food resources, porpoises may be able to more easily meet the energetic demands of 

maintenance, growth and reproduction. This is especially important in the case of mature 

females which have the additional costs of pregnancy and lactation that increase the energy 

requirements and often happen at the same time (Brodie 1995, Kastelein et al 1997, Read et al 

1997, Read and Westgate 1997, Koopman, 1998, Lockyer 2007, MacLeod et al 2007 a, b).  

It might be expected that porpoise distribution varies with the distribution and abundance of 

the prey. If the year-to-year trends in abundance of blue whiting (ICES 2012) are compared 

with porpoise sightings, years with highest abundance of blue whiting were not related with 

years with lowest sightings, which would be expected if porpoises moved to deeper water to 

feed on blue whiting.  Ideally the relationships between porpoise and prey distribution and 

abundance need to be examined at finer spatial and temporal scales. 

The environmental conditions in which porpoises of Galician waters were seen with higher 

probability are now better known, increasing the knowledge of this species in the area. The 

modification of those key habitat conditions for porpoises may affect the presence and survival 

of porpoises, so this information is potentially useful for the development of conservation 

plans and also for the definition of SACs as is required by Habitats Directive. Although EU 

Member States have this obligation and harbour porpoises are designated as ”vulnerable” in 

Spain (Catálogo Nacional de Especies Amenazadas, Law 4/1989, 2000), none of the existing 

Galician SACs has been established specifically for harbour porpoises, although there is a 

debate about the usefulness of marine protected areas to highly mobile species such as 

porpoises. 

 



224 
 

Patterns in harbour porpoises sightings along  the Galician coast  

There was variation in the number of porpoise sightings with year and this differed between 

land- and boat-based observations, although it should be kept in mind that there was a 

difference in the survey period for the two methods, which may lead to differences in the 

results. Whereas boat-based surveys were carried out only through some months of the year 

(from March to October), land-based surveys were carried out all year round. Also there is 

obviously a difference in the area surveyed, i.e. in relation to depth and proximity to the coast, 

so in some years porpoises could be closer to the coast and hence detected better with coast 

surveys than boat surveys, and vice versa. In addition, given the focus on the South coast of 

Galicia for the boat-based surveys, if porpoises moved North to northern in some years they 

would not be detected.   

Boat-based surveys showed a significant increase in the number of sightings in 2005 and no 

detections in 2006 while land-based surveys showed an increase in the number of sightings 

over the years, at least during the last 5 years of surveys, with the year with most sightings 

being 2011 and the year with fewest records being 2007 (except for the three months of 

survey in 2003 when no porpoises were detected). Pierce et al (2010) also showed interannual 

variation in the number of porpoise sightings from land-based observations in the same area 

during 2003 - 2007. 

In Galicia the apparent changes in porpoise distribution over the years could be due to: i) the 

use of different areas during the study period due to changes in prey distribution,  abundance, 

movement from deeper to coastal waters; ii) the porpoise population is increasing, although 

the possible rate of increase of the population calculated from life history data (Read et al 

2012) seems to be lower than the apparent increase seen in the present study (see Chapter 

IV); or, iii) the movement of individuals from other areas such as Asturias or Portugal, or from 

distant deeper waters to Galicia, but there are insufficient data at present to evaluate this 

possibility. Variation between years was also found in other areas of Europe, such as Scotland 

(Marubini et al 2009, Booth et al 2013) and the Baltic Sea (Benke et al 2014). 

In addition, a temporal trend during the day was found in the land-based study. The number of 

sightings increased in later in the day, as indeed was found before by Pierce et al (2010). The 

reason why more sightings were recorded later in the day is not clear. It could be due to boat 

traffic especially in summer when there is a great number of pleasure boats active during the 
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day and boat traffic tends to decrease after 19.00 h (Pers. Obs.), thus noise decrease too. 

However, this needs further study. 

There was also a spatial trend in the number of sightings from land, with more detections in 

Lugo and A Coruña (Northern stations), which is again broadly consistent with previous 

analysis of 2003 - 2007 data (Pierce et al 2010), which found that the sightings were more 

frequent around Punta Roncadoira (between observation points 2 and 3 in this work), and 

Cabo Vilán (observation point 13). In contrast, the peak found in that study in A Guardia 

(observation point 30, adjacent to the border with Portugal) was not detected here. As it was 

said before, this decrease in the number of sightings in the south of the study area could be 

due to changes in porpoises distribution or movements to other areas. It seems that Galician 

porpoises prefer areas with fewer and smaller rias, and avoid bigger rias such as the Rías of A 

Coruña, Pontevedra and Vigo, where bottlenose dolphins, apparently one of the most 

important factors affecting porpoise presence, are detected most frequently - and which are 

also highly industrialized areas. 

Patterns in the strandings of harbour porpoises 

Strandings are a good indicator of the species present in the area, as shown in Portugal, Galicia 

and many other areas (López et al 2002, 2004, 2012, Maldini et al 2005, MacLeod et al 2005, 

Pierce et al 2010, Pyeson 2010, 2011, Ferreira et al 2012, Santos et al 2012), although the 

proportion of each species from strandings and sightings is likely to be different, related to the 

distribution and abundance of the species and to the distribution of the main causes of 

mortality. Thus, coastal species will be most sighted from land-based and coastal waters 

surveys, i.e. bottlenose dolphins in Galicia and Portugal. However, the most commonly 

stranded species in West Iberian Peninsula (WIP) is the common dolphin (Delphinus delphis) 

followed by bottlenose dolphin (in Galicia) or harbour porpoise (in Portugal) (López et al 2002, 

2004, Ferreira et al 2012), which is probably related to high numbers of fishery by-catch 

mortalities in common dolphins.  

Strandings can also reveal the presence of species that are not sighted easily, such as false 

killer whale (Pseudorca crassidens), pygmy sperm whale (Kogia breviceps), blue whale 

(Balaenoptera musculus) or several beaked whales (Penas-Patiño and Piñeiro 1989, López et al 

2002, 2003, 2004, López 2003, Covelo et al 2009, 2015, Pierce et al 2010, Spyrakos et al 2011, 

Ferreira et al 2012, Santos et al 2012, Fernandez et al 2013). 



226 
 

The analysis of stranding data was carried out for the whole study area, but also dividing the 

data in two groups: Galicia and Portugal. A total of 424 strandings of harbour porpoises were 

recorded in the whole study area (57% in Galicia and 42% in Portugal).  

Differences between years were found. The highest number of porpoises stranded was 

recorded in 2011 and the lowest was recorded in 2001. If the areas are split, the minimum in 

Galicia changes to 1998. In Portugal, the peak in 2011 was also found in strandings by Ferreira 

et al (2012), but in the current study, which analysed more years of data, it was also found that 

2013 had a high number of strandings. Overall there was no significant upward trend in the 

number of strandings over the study period, in contrast to what has been found in other areas 

of Europe where the number of strandings are generally increasing (Jepson et al 2005, Leeney 

et al 2008, Pikesley et al 2011, Peltier et al 2013).  

Harbour porpoise strandings in Galicia and Portugal occur throughout the year as previous 

studies suggested, although there were differences between months, with the number of 

strandings higher in winter than in summer. Previous studies in Galicia found that porpoise 

strandings were most common in winter, with a peak in March (Lens 1997, López et al 2002). 

This peak was also found in the current study as well as another peak in April. In Portugal, 

Sequeira (1996) found that strandings from 19th century and until December of 1994 were 

more numerous in winter and spring. Ferreira (2007), with data from January 2000 to 

December 2005, found no significant differences between months. In the present study, a 

peak in May was detected in Portuguese porpoise strandings. Trends in strandings have been 

related with known changes in cetacean distribution and abundance, sometimes related with 

seasonal migration (Jepson et al 2005, Leeney et al 2008), or levels of fisheries by-catch 

(Jauniaux et al 2002, Jepson et al 2005, Leeney et al 2008), and as an indirect result of trends in 

sightings (Siebert et al 2006, Pikesley et al 2011). The analysis of land-based data (Chapter IV, 

Pierce et al 2010) did not find clear seasonal trends in the number of sightings, while results 

from boat-based surveys (Chapter III) showed higher number of detections in June and 

October. Thus the seasonal pattern of strandings is probably not directly linked to local 

distribution.   

The distribution of harbour porpoise strandings along the coast of WIP showed an increase in 

the number of strandings from North to South with two regions showing highest numbers of 

strandings: SA.5 and SA.9. Both areas were previously identified as having a high number of 

porpoise strandings (Sequeira 1996, Lens 1997). While SA.5 is the one with fewest sightings 

(Pierce et al 2010, Chapter IV), SA.9 is also one with most sightings (Santos et al 2012). Usually, 
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it is expected that areas with highest occurrence of sightings will also be the ones with highest 

number of strandings, since both might be expected to reflect local abundance. Therefore and 

especially in Galicia, there may be other factors influencing the arrival of carcasses on the 

coast, such as oceanographic features (currents, tides, winds, sea-pressure gradients, bottom 

topography) (Evans et al 2005, Leeney et al 2008, de Boer et al 2012, Peltier et al 2012, 2013), 

destruction of the carcasses by scavengers (Peltier et al 2012) or the sinking of the body. All 

these factors mean that not all the dead animals arrive on the shore and/or that, if they do so 

it is in different areas from where they were living. In the study area there could be a mixture 

of carcasses originating from i) Asturias and Galicia, ii) different areas of Galicia, iii) Galicia and 

Portugal, iv) different areas of Portugal, and perhaps less plausibly, v) Gulf of Cádiz, Gibraltar 

Strait or even North Africa. 

In the WIP the key physical environmental factors would be i) the orientation of the coastlines; 

the ones oriented to the North are less influenced by winds from South and Southwest that 

are predominant in winter (Cabanas 1999) compared coastlines oriented to the West, so fewer 

animals will strand in areas oriented to the North in that period of the year; ii) the tidal 

currents will also influence strandings especially in the mouth of the rías; and in some narrow 

areas between isles and the tidal range is around 3 m which generates important flow and ebb 

tide currents (Cabanas 1999) which can drive the carcasses to different areas; iii) on coastlines 

with more sandy beaches, carcasses may remain for longer periods of time than in steep rocky 

areas, so they are more likely to be found; iv) the presence of the Portuguese Current, the 

Navidad Current (Pingree and Le Cann 1989) and the upwelling system, could cause carcasses 

to travel to different areas from where they were living; v) the presence of storms that are 

more frequent during autumn and winter, which can carry carcasses also to other areas and 

also cause the death of animals in poor condition (López et al 2002).  

To try to find out the proportion of dead animals that reach the shore in Galicia, a study 

tagging by-caught animals and releasing them again into the sea was carried out (Martinez-

Cedeira et al 2011), and found that nearly 22% reach the shore travelling between 31 and 100 

km. In other studies in Europe the proportion of carcasses that reached the shore was lower, 

however Peltier et al (2012) concluded that although the number of animals that strand is a 

small fraction of the ones that die over the continental shelf, strandings can allow us to assess 

mortality both numerically and spatially, as well as relative abundance, species richness and 

distribution of cetaceans. 
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The probability of stranding is not the only important issue, the probability of finding the 

carcasses is important as well. Since 1999 in Galicia and 2000 in Portugal, the effort of 

Strandings Networks has stabilized, but in later years there may have been an ongoing 

increase of stranding reports by people present on the beaches due to the ease of access to 

the authorities, thanks, for example, with the opportunity of using 112 to report strandings 

and sightings. 

Peltier et al (2012) estimated that, under the assumption that all dead carcasses float and drift, 

the probability that a stranded cetacean is discovered is only around 12.9%. Therefore, a 

rather small proportion of dead animals are likely to be recorded and necropsied, but they can 

still provide relevant information on mortality at sea, relative abundance, species richness and 

distribution of cetaceans (Maldini et al 2005, MacLeod et al 2005, Pyeson 2010, 2011, Peltier 

et al 2012). 

Characteristics of harbour porpoises stranded in the WIP: sex, length  and by-

catch 

Together with the information on presence/absence and spatiotemporal trends, strandings 

provide data about life history, diet, health, contaminants, genetics or cause of death (e.g. 

Siebert et al 1999, Jauniaux et al 2002, Santos and Pierce 2003, Das et al 2004 a, b, Santos et al 

2004, 2005, Fontaine et al 2007 b, 2014, Murphy et al 2010, Lopez et al 2012, Read et al 2012, 

Stockin et al 2013, Méndez-Fernández et al 2014 a, b). In the WIP coast the oceanographic 

features and the situation of the WIP itself reduce the probability of carcasses belonging to 

other areas reaching this coast; and the isolation of Iberian population from porpoises of other 

European waters together with the absence of any population structure along the Spanish and 

Portuguese coasts (Fontaine et al 2007 a, 2010, 2014, Alfonsi et al 2012, Chapter II), suggest 

that the carcasses will be representative of the animals present in the area. 

In the WIP there was the same proportion of males as females, although the number of 

females was slightly lower in Portugal. The total body length ranged from 81 to 202 cm with a 

mean length of 146.66 cm, the Portuguese porpoises being larger than Galician, and females 

larger than males. These sizes agree with previous studies that described the Iberian porpoises 

as larger animals than those of other areas (e.g. Donovan and Bjørge 1995, Sequeira 1996, 

Lens 1997, Lockyer 2003, Lopez 2003, Read et al 2012, Lopez et al 2012). The larger animals 

stranded in winter and carcasses were fresher when animals were smaller. This could be due 

to the presence of larger animals in areas far from the coast that winter conditions move 
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closer to the coast, and of smaller animals in areas near the shore which will strand faster and 

with better body condition than others from farther areas. 

By-catch is one of the principal threats for small cetaceans, especially harbour porpoises (IWC 

1994). In an area of high fishing effort such as WIP (Sequeria et al 1992, EUROSTAT 2010) 

interactions between fisheries and cetaceans has become a topic of great concern (e.g. Lopez 

et al 2002, Fernández-Contreras et al 2010, Ferreira et al 2012, López et al 2012, Read et al 

2012, Goetz et al 2014). Relatively few cetacean by-catches are directly reported by fishermen, 

so this problem has to be studied with observers on board fishing boats, interviews or by 

diagnosis during the necropsies (absence of tail/flippers, presence of ropes, net marks).  

In Galicia, many by-catches are common dolphins (23%), but other species such as harbour 

porpoises (22%) and bottlenose dolphins (14%) are also by-caught (López et al 2002, 2003). In 

the current study, it was found that on average 33.42% of the stranded porpoises had signs of 

by-catch with a higher proportion in the Portuguese coast (55.95%) than in the Galician coast 

(26.24%). That difference was also highlighted by Read et al (2012) who suggested that one of 

the reasons could be that gillnets are one of the gears that cause the highest rates of by-catch 

in Galicia whereas in Portugal, although gillnets are also problematic, the beach-seines are 

commonly used in North-Central Portugal and are thought to be one of the gears to which 

harbour porpoises are most vulnerable (Sequeira and Inácio 1992, López and Valeiras 1997, 

López et al 2003, Ferreira 2007). Ferreira et al (2012) suggested that in Portugal the interaction 

with fisheries is the cause of 44 - 54% of the registered cetacean deaths, including 58% for 

porpoises (Ferreira 2007). 

Since the detection of signs of by-catch in carcasses depends on the state of decomposition 

and the amount of animals that reach the shore, the number of cetaceans that die due to 

interactions with fisheries is probably underestimated if carcasses in poor condition are used 

to calculate the by-catch rate. Despite that, the rates found indicate that the bycatch mortality 

is unsustainable, as suggested by Ferreira (2007), López et al (2012), Read et al (2012) and 

Goetz et al (2014), referring to ASCOBANS (1997), which states that an anthropogenic removal 

of more than 1.7% of the best available population estimate abundance represents an 

‘unacceptable interaction’.  

This differentiated and isolated harbour porpoise population of the WIP faces an important 

problem, and as an area with a great socio-economic importance of fisheries, it is difficult to 

reduce and likely impossible to totally avoid by-catch. However, measures to reduce that 
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problem and specific management plans for porpoises should be developed. Different 

measures can be developed in this area, such as i) the reduction of the use of gears that cause 

damage to porpoises or restriction of their use in areas where the species has high densities, ii) 

the use of acoustic deterrent devices (“pingers”), coupled with monitoring of their 

effectiveness, and iii) of acoustic reflective nets, to reduce the likelihood of entanglement by 

modifying the behaviour of the animals and increment their ability to detect nets, which have 

been proved to be effective for porpoises in several areas (see Dawson et al 2013 for a review 

of the use of pingers, Trippel et al 2003, Larsen et al 2007), and can also reduce the economic 

cost of damage to nets and captured fish. However, it has to be kept in mind that such devices 

increase the noise in the sea and there is the possibility of causing the exclusion of the species 

from areas where they normally feed. Also there could be a reduction of the catch of the 

target species and reduced ease of handling for fishermen of some modified nets (Trippel et al 

2003, Larsen et al 2007, Dawson et al 2013). 

Study limitations 

When a study is based on non-invasive samples there is a problem related with the number 

and area coverage of the samples. For harbour porpoise the use of biopsies is complicated due 

to the shy behaviour of the species, aside from ethical, logistic and financial considerations, 

therefore usually samples from porpoises come from strandings or fisheries by-catches.  This 

sampling is usually more accessible and provides a low-cost alternative to samples obtained by 

other techniques (e.g. biopsy sampling) but, as it is known, stranded animals can drift and 

carcasses can be recovered many kilometres away from their location of death and also they 

can be in poor body condition. In the present study, samples from stranded animals were used 

to perform genetic analyses and in all cases stranding location was used as proxy of sample 

origin. Despite those limitations due to the use of strandings, it was possible to have strong 

conclusions regarding harbour porpoise genetics. Other limitations relate to the fact that 

within stranded individuals there might be a relative high proportion of sick or weak 

individuals that may be more susceptible of stranding, although in the analyses of length and 

by-catch this should not have any influence, it could have an influence when studying the body 

condition. 

In boat-based surveys GPS positions of the different vessels at the time of each sighting were 

used as proxy of cetacean location, and in land-based surveys, their position is related to the 

observation station, which limits the accuracy of assignment of environmental variables to 

each particular sighting. However, it is likely that most of the sightings of harbour porpoises 
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were recorded within a small distance from the vessel (i.e. 1 km) minimizing the potential 

error. 

Conclusion 

The present study provides some useful data on the genetic characteristics and suitable 

habitat areas of harbour porpoise in West Iberian Peninsula, with a special focus on North 

West Iberia. Results provide evidence of an absence of genetic structure along WIP and a clear 

isolation of this population from the populations of the North East Atlantic and Black Sea with 

an important influence of the ongoing ecological processes. These results support the 

recommended definition of Iberian Peninsula as a management units for harbour porpoise 

proposed for MSFD and also the definition of a third subspecies, Phocoena phocoena 

meridionalis. Both sightings and strandings showed that porpoises are present in the area all 

year around with variations in the number of sightings between years, months and subareas, 

which leads us to think that they may move between areas. The results of this study provide 

essential information about this species in Galicia. For example, i) protected areas cannot be 

seasonal, because the species is present throughout the year, ii) Galicia is one of the key areas 

in the Iberian peninsula, with five localities with particularly high occurrence of porpoises: 

Punta Candieira, Vilán and Touriñán Cape, Punta Remedios (Lira) and Faro de Corrubedo, iii) 

the main areas used by harbour porpoises and bottlenose dolphins are different, moreover, 

while a part of the bottlenose dolphin population was described as a resident population 

(Fernández et al 2011 ) the porpoise population does not seem to behave in the same way, 

therefore the same SAC is not going to be useful for both species, unless it is big enough to 

cover those different areas. Strandings showed that, as was known, harbour porpoises from 

WIP are bigger that those from other areas, and with similar proportion of males and females. 

It is well known that by-catch is one of the principal threats for small cetaceans, especially 

harbour porpoises, and it is of concern in an area of high fishing effort such as WIP. A higher 

proportion of by-caught porpoises was found on the Portuguese coast than on the Galician 

coasts, maybe due to the difference in the fishery arts used in each area. In any case, in both 

areas (Galicia and Portugal) bycatch mortality is unsustainable according to ASCOBANS (1997). 

However by-catch is not the only threat for this species, and is essential to carry out further 

studies to enrich the knowledge about Iberian harbour porpoises and to support its 

conservation.  
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Future Work.  

To increase our knowledge about harbour porpoises in the Iberian Peninsula, several lines of 

further studies may be suggested: 

 Increase the number of samples from WIP and especially from Gulf of Cadiz for an 

even more fine-scale genetic analyse and including new techniques to provide a 

genome-wide pattern of genetic divergence across populations to examine the extent 

to which ecological divergence drives adaptive genetic differentiation as well as 

neutral divergence. 

 The further study of Iberian porpoise diet from stomach contents and other 

methodologies such as stable isotopes and fatty acid profiles, will help us to interpret 

the distribution of porpoises in the area. 

 A continuous monitoring program from boat and land-based surveys will increase the 

information about distribution and abundance of the species, and then it will allow a 

better understanding of the relationship of the distribution of porpoises with 

environmental variables. Moreover, it will give the opportunity to evaluate the success 

of conservation strategies for the species. 

 The increase the boat-based survey effort with surveys all year around, along the 

whole Galician coast, reaching deeper areas, and keeping them in time, will give more 

comparable data with land-based surveys and knowledge about the presence of 

porpoises in areas poor known until now. 

 The analyses of pooled sightings of porpoises from all WIP would give us a better idea 

of that relationship between its distribution and environment than the study of the 

areas separately. 

 The development of acoustic studies would increase the hours of monitoring and 

provide useful supplementary data about the distribution of the species even at night. 

 An implementation of observation effort in the areas detected as especially used by 

porpoises will complement the information about the use of those areas by them, 

giving additional knowledge about this species. 

 Study measures to reduce by-catch in the area such as acoustic deterrent devices, 

acoustic reflective nets, or the reduction of fishing effort in areas of especial use for 

porpoises. 
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Appendix I. Allele frequencies for the 10 microsatellite loci used in this study.

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

PPH137 N 104 59 22 13 20 24 23 13 2 2 
 

108 102 13 

 
Allele 

              

 
98 0 0 0.091 0 0 0 0 0 0 0 

 
0.000 0.020 0.000 

 
100 0.019 0 0 0.038 0.075 0 0 0.038 0 0 

 
0.012 0.020 0.038 

 
102 0.005 0.034 0.114 0.077 0 0.042 0.109 0 0 0 

 
0.015 0.068 0.000 

 
104 0.014 0.008 0 0 0.025 0 0.043 0 0.500 0 

 
0.018 0.015 0.000 

 
106 0.413 0.229 0.205 0.192 0.125 0.125 0.261 0.154 0 0.500 

 
0.343 0.181 0.154 

 
108 0.014 0.068 0.023 0 0.025 0.063 0.065 0 0 0 

 
0.033 0.039 0.000 

 
110 0.173 0.22 0.114 0.077 0.125 0.167 0.065 0 0 0 

 
0.187 0.113 0.000 

 
112 0.048 0.042 0.091 0.154 0.125 0.063 0.043 0.077 0.500 0 

 
0.051 0.088 0.077 

 
114 0.115 0.144 0.114 0.077 0.175 0.188 0.174 0.538 0 0 

 
0.123 0.152 0.538 

 
116 0.053 0.102 0.114 0.231 0.1 0.229 0.087 0.192 0 0 

 
0.069 0.147 0.192 

 
118 0.125 0.127 0.091 0 0.15 0.104 0.043 0 0 0.500 

 
0.126 0.083 0.000 

 
120 0.01 0.008 0.045 0.115 0.025 0 0.065 0 0 0 

 
0.009 0.044 0.000 

 
122 0.01 0.017 0 0.038 0.05 0.021 0.043 0 0 0 

 
0.012 0.029 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

415/416 N 114 59 17 13 19 24 18 10 2 1 
 

117 91 10 

 
Allele 

              

 
205 0.004 0 0 0 0 0 0 0 0 0 

 
0.003 0.000 0.000 

 
209 0 0 0 0.038 0 0.021 0 0 0 0 

 
0.000 0.011 0.000 

 
211 0 0.008 0 0 0 0.021 0 0.050 0 0 

 
0.003 0.005 0.050 

 
215 0.754 0.771 0.647 0.692 0.632 0.563 0.639 0.600 0.500 0.500 

 
0.756 0.626 0.600 

 
217 0.228 0.195 0.176 0.231 0.289 0.396 0.306 0.350 0.500 0 

 
0.219 0.291 0.350 

 
219 0.004 0.008 0.059 0.038 0.053 0 0.056 0 0 0.500 

 
0.008 0.038 0.000 

 
221 0 0.017 0 0 0.026 0 0 0 0 0 

 
0.006 0.005 0.000 

  231 0.004 0 0 0 0 0 0 0 0 0 
 

0.003 0.000 0.000 

 
237 0.004 0 0 0 0 0 0 0 0 0 

 
0.003 0.000 0.000 

 
283 0 0 0.118 0 0 0 0 0 0 0 

 
0.000 0.022 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

PPH130 N 116 57 24 12 17 24 25 14 2 2 
     Allele               

 
158 0 0 0.021 0 0 0 0 0 0 0 

 
0.000 0.005 0.000 

 
170 0 0 0 0 0 0.021 0 0 0 0 

 
0.000 0.005 0.000 

 
172 0.022 0.009 0.042 0 0.029 0.083 0.02 0 0 0 

 
0.017 0.040 0.000 

 
174 0.047 0.009 0 0 0.059 0.063 0.04 0.036 0 0 

 
0.034 0.040 0.036 

 
176 0.504 0.632 0.375 0.292 0.353 0.250 0.16 0.464 1 0.750 

 
0.554 0.282 0.464 

 
178 0.004 0.018 0.083 0.125 0.118 0.104 0.200 0.250 0 0.250 

 
0.011 0.124 0.250 

 
180 0.004 0.018 0.083 0.125 0.029 0.042 0.06 0 0 0 

 
0.008 0.064 0.000 

 
182 0.155 0.140 0.083 0.125 0.147 0.042 0.18 0 0 0 

 
0.147 0.114 0.000 

 
184 0.004 0 0.083 0.125 0 0.021 0.1 0 0 0 

 
0.003 0.059 0.000 

 
186 0.043 0.026 0.104 0.042 0.029 0.063 0.12 0 0 0 

 
0.037 0.079 0.000 

 
188 0.017 0 0.021 0.042 0.029 0.146 0.04 0.214 0 0 

 
0.011 0.059 0.214 

 
190 0 0.018 0.104 0.083 0.147 0.063 0.04 0.036 0 0 

 
0.006 0.084 0.036 

 
192 0 0 0 0 0 0.021 0.02 0 0 0 

 
0.000 0.010 0.000 

 
194 0.017 0.018 0 0.042 0.059 0 0.02 0 0 0 

 
0.017 0.020 0.000 

 
196 0.039 0.009 0 0 0 0.042 0 0 0 0 

 
0.028 0.010 0.000 

 
198 0.142 0.105 0 0 0 0.042 0 0 0 0 

 
0.127 0.010 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

PPH110 N 116 59 23 15 22 24 25 16 2 2 
 

120 109 16 
 Allele               

 
99 0 0 0 0 0 0.021 0 0 0 0 

 
0.000 0.005 0.000 

 
101 0 0 0.022 0.033 0.045 0.042 0 0 0 0 

 
0.000 0.028 0.000 

 
107 0 0 0.022 0.033 0.023 0 0 0 0 0 

 
0.000 0.014 0.000 

  109 0.310 0.356 0.174 0.167 0.091 0.146 0.080 0.031 0.500 0 
 

0.324 0.130 0.031 

 
111 0.009 0.008 0.065 0.100 0.045 0.021 0.040 0.031 0 0 

 
0.008 0.051 0.031 

 
113 0.034 0.076 0.087 0.133 0.091 0.083 0.180 0.500 0 0.500 

 
0.053 0.116 0.500 

 
115 0.384 0.364 0.174 0.133 0.273 0.292 0.200 0 0 0.500 

 
0.374 0.222 0.000 

 
117 0.254 0.186 0.326 0.200 0.273 0.208 0.280 0.438 0.500 0 

 
0.232 0.259 0.437 

 
119 0.004 0 0.130 0.167 0.091 0.146 0.220 0 0 0 

 
0.003 0.148 0.000 

 
121 0 0 0 0.033 0.068 0.042 0 0 0 0 

 
0.000 0.028 0.000 

 
125 0.004 0.008 0 0 0 0 0 0 0 0 

 
0.006 0.000 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

GT011 N 117 57 23 14 22 24 25 15 2 2 
 

121 108 15 

 Allele               

 
96 0 0 0 0 0 0 0.020 0 0 0 

 
0.000 0.005 0.000 

 
106 0 0.009 0.022 0 0 0 0.020 0 0 0 

 
0.003 0.009 0.000 

 
108 0.756 0.781 0.457 0.250 0.318 0.313 0.360 0.200 0 0.750 

 
0.756 0.346 0.200 

 
110 0.209 0.114 0.217 0.250 0.295 0.167 0.120 0.700 0.500 0.250 

 
0.183 0.206 0.700 

 
111 0 0 0.043 0 0 0.021 0.020 0.033 0.250 0 

 
0.003 0.019 0.033 

 
112 0.026 0.035 0.065 0.036 0 0 0.020 0.033 0 0 

 
0.028 0.019 0.033 

 
114 0 0.009 0 0.036 0.023 0.021 0 0.033 0 0 

 
0.003 0.014 0.033 

 
118 0 0 0.043 0.036 0.045 0.042 0 0 0 0 

 
0.000 0.033 0.000 

 
120 0 0 0 0.107 0.068 0.104 0.080 0 0 0 

 
0.000 0.070 0.000 

 
122 0.004 0.026 0.043 0.036 0.045 0.042 0.060 0 0 0 

 
0.011 0.046 0.000 

 
124 0.004 0.018 0.043 0.107 0.091 0.104 0.140 0 0 0 

 
0.008 0.098 0.000 

 
126 0 0.009 0 0.107 0.068 0.167 0.100 0 0.250 0 

 
0.006 0.089 0.000 

 
128 0 0 0.065 0.036 0.045 0 0.060 0 0 0 

 
0.000 0.042 0.000 

 
132 0 0 0 0 0 0.021 0 0 0 0 

 
0.000 0.005 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

EV94 N 114 59 20 8 19 20 18 13 2 2 
 

118 85 13 
 Allele               

 
184 0 0 0 0 0 0 0.028 0 0 0 

 
0.000 0.006 0.000 

 
190 0.004 0 0 0 0 0 0.028 0 0 0 

 
0.003 0.006 0.000 

 
192 0.004 0 0 0 0 0 0 0.038 0 0 

 
0.003 0.000 0.038 

 
194 0.474 0.373 0.350 0.188 0.368 0.150 0.111 0.654 0 0.500 

 
0.435 0.241 0.654 

 
196 0.004 0.059 0.075 0 0.053 0 0.139 0.115 0.250 0 

 
0.025 0.060 0.115 

 
198 0.303 0.364 0.200 0.438 0.289 0.325 0 0 0 0.500 

 
0.322 0.229 0.000 

 
200 0.140 0.169 0.100 0.313 0.053 0.225 0.333 0.154 0.500 0 

 
0.152 0.188 0.154 

 
202 0.061 0.025 0.125 0 0.158 0.075 0.222 0.038 0 0 

 
0.048 0.129 0.038 

 
204 0.009 0.008 0.125 0.063 0.079 0.150 0.139 0 0.250 0 

 
0.011 0.118 0.000 

 
206 0 0 0.025 0 0 0.075 0 0 0 0 

 
0.000 0.023 0.000 

 
149 0.005 0.009 0.022 0.125 0.023 0 0 0.133 0 0.250 

 
0.009 0.028 0.133 

 
151 0 0 0 0 0.023 0.022 0 0.300 0 0 

 
0.000 0.009 0.300 

 
153 0.009 0.018 0 0 0 0 0 0.033 0 0 

 
0.012 0.000 0.033 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

Igf-I N 106 56 23 16 22 23 24 15 2 2 
 

110 108 15 

 Allele               

 
127 0 0.009 0 0 0 0.065 0 0 0 0 

 
0.003 0.014 0.000 

 
129 0 0 0 0.031 0 0 0 0 0 0 

 
0.000 0.005 0.000 

 
131 0 0.009 0 0 0.023 0.022 0.083 0 0 0 

 
0.003 0.028 0.000 

 
133 0.005 0 0.065 0 0.091 0.043 0.146 0 0 0 

 
0.003 0.075 0.000 

 
135 0.019 0.009 0.065 0.063 0.091 0.196 0.146 0 0 0 

 
0.015 0.117 0.000 

 
137 0.057 0.045 0.196 0.125 0.159 0.174 0.229 0.400 0 0.250 

 
0.054 0.182 0.400 

 
139 0.774 0.732 0.304 0.219 0.250 0.130 0.146 0.033 0 0.250 

 
0.744 0.206 0.033 

 
141 0.094 0.107 0.130 0.125 0.091 0.152 0.104 0 0.500 0 

 
0.102 0.117 0.000 

 
143 0.009 0.027 0.130 0.063 0.091 0.087 0.063 0 0.250 0 

 
0.018 0.089 0.000 

 
144 0 0 0 0 0.023 0.022 0 0 0 0 

 
0.000 0.009 0.000 

 
145 0.028 0.027 0.043 0.063 0.114 0.043 0.021 0.033 0.250 0.250 

 
0.033 0.056 0.033 

 
147 0 0.009 0.043 0.188 0.023 0.043 0.063 0.067 0 0 

 
0.003 0.065 0.067 

  



276 
 

Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

PPH104 N 113 59 23 16 24 24 25 16 2 2 
 

117 112 16 

 
142 0 0 0 0 0 0.042 0 0 0 0 

 
0.000 0.009 0.000 

 
144 0.004 0 0 0 0 0 0 0 0 0 

 
0.003 0.000 0.000 

 
150 0.004 0 0.022 0.031 0 0.021 0.020 0 0 0 

 
0.003 0.018 0.000 

 
152 0 0 0.043 0 0.021 0 0 0 0 0 

 
0.000 0.013 0.000 

 
154 0 0 0.022 0 0 0 0.020 0 0 0 

 
0.000 0.009 0.000 

 
156 0 0.008 0.022 0.063 0.042 0.042 0.040 0 0 0 

 
0.003 0.040 0.000 

 
158 0.133 0.085 0.109 0.125 0 0.208 0.140 0.031 0.250 0.250 

 
0.119 0.117 0.031 

 
160 0.062 0.110 0.087 0.125 0.125 0.167 0.120 0 0 0 

 
0.077 0.126 0.000 

 
162 0.062 0.102 0.065 0.250 0.229 0.167 0.060 0.531 0.500 0.250 

 
0.082 0.149 0.531 

 
164 0.376 0.314 0.196 0.125 0.313 0.167 0.160 0.063 0.250 0 

 
0.349 0.198 0.062 

 
166 0.119 0.161 0.261 0.063 0.125 0.063 0.200 0 0 0 

 
0.131 0.144 0.000 

 
168 0.119 0.076 0.065 0.063 0.042 0.063 0.100 0.156 0 0 

 
0.102 0.068 0.156 

 
170 0.106 0.119 0.043 0.063 0.063 0.063 0.120 0.063 0 0 

 
0.108 0.072 0.062 

 
172 0 0.008 0.022 0.063 0 0 0 0.125 0 0 

 
0.003 0.009 0.125 

 
174 0.009 0.017 0.022 0 0.042 0 0.020 0.031 0 0.250 

 
0.014 0.018 0.031 

 
176 0 0 0.022 0.031 0 0 0 0 0 0 

 
0.000 0.009 0.000 

 
184 0.004 0 0 0 0 0 0 0 0 0 

 
0.003 0.000 0.000 

 
188 0 0 0 0 0 0 0 0 0 0.250 

 
0.003 0.000 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

GT015 N 105 52 22 12 20 21 20 13 2 2 
 

109 95 13 
 Allele               

 
120 0.005 0 0 0 0 0 0 0 0 0 

 
0.003 0.000 0.000 

 
122 0.048 0.038 0 0 0 0 0 0 0 0 

 
0.043 0.000 0.000 

 
130 0 0 0 0 0.025 0.024 0.050 0 0 0 

 
0.000 0.021 0.000 

 
132 0.138 0.087 0.023 0.042 0 0.048 0.200 0 0 0 

 
0.118 0.063 0.000 

 
134 0.062 0.038 0.136 0.208 0 0.119 0.025 0 0.250 0.250 

 
0.059 0.089 0.000 

 
136 0.076 0.077 0.159 0.125 0.225 0.238 0.125 0.769 0 0.500 

 
0.081 0.179 0.769 

 
138 0.090 0.077 0.091 0.083 0.025 0.024 0.025 0.077 0 0 

 
0.084 0.047 0.077 

 
140 0.005 0.038 0.045 0 0 0 0.025 0.038 0 0 

 
0.015 0.016 0.038 

 
142 0 0 0 0.083 0 0 0.075 0 0 0 

 
0.000 0.026 0.000 

 
144 0 0.029 0 0 0 0.024 0 0 0 0 

 
0.009 0.005 0.000 

 
146 0.052 0.048 0.045 0.042 0.025 0.024 0.075 0 0 0 

 
0.050 0.042 0.000 

 
148 0.071 0.096 0.045 0 0 0.024 0 0 0.250 0 

 
0.081 0.016 0.000 

 
150 0.124 0.144 0.136 0 0.050 0.095 0.025 0 0 0.250 

 
0.130 0.068 0.000 

 
152 0.024 0.058 0.205 0 0.075 0.048 0.025 0.115 0 0 

 
0.034 0.079 0.115 

 
154 0 0.010 0.045 0.042 0.075 0.071 0.025 0 0 0 

 
0.003 0.053 0.000 

 
156 0.052 0.029 0 0.042 0.075 0 0.050 0 0 0 

 
0.043 0.032 0.000 

 
158 0.095 0.087 0.023 0 0.025 0.024 0.075 0 0 0 

 
0.090 0.032 0.000 

 
160 0.014 0 0 0 0.075 0 0.025 0 0.250 0 

 
0.012 0.021 0.000 

 
162 0.038 0.019 0 0.125 0.100 0 0.075 0 0.250 0 

 
0.034 0.053 0.000 

 
164 0.014 0.019 0 0.042 0.150 0.071 0.050 0 0 0 

 
0.015 0.063 0.000 

 
166 0.062 0.048 0 0.083 0.025 0.095 0.050 0 0 0 

 
0.056 0.047 0.000 

 
168 0.014 0.038 0.023 0.083 0.025 0.071 0 0 0 0 

 
0.022 0.037 0.000 

 
170 0.010 0.010 0.023 0 0.025 0 0 0 0 0 

 
0.009 0.010 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

GT015 N 105 52 22 12 20 21 20 13 2 2 
 

109 95 13 
 Allele               

 
172 0.005 0.010 0 0 0 0 0 0 0 0 

 
0.006 0.001 0.000 
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Appendix I. Continued. 

Population PORT GAL FRA BELG IREL ENG SCOT TUR BCO HUEL 
 

Group 1 Group 2 Group 3 

GATA053 N 112 59 24 16 24 24 25 15 2 2 
 

116 113 15 
 Allele               

 
247 0 0 0 0 0.021 0 0 0 0 0 

 
0.000 0.004 0.000 

 
257 0 0 0 0.063 0 0 0.02 0 0.25 0 

 
0.003 0.013 0.000 

 
259 0 0 0 0 0.021 0 0 0 0 0 

 
0.000 0.004 0.000 

 
261 0 0 0.063 0 0.042 0 0 0 0.25 0 

 
0.003 0.022 0.000 

 
263 0 0 0 0 0.125 0.083 0 0.033 0 0 

 
0.000 0.045 0.033 

 
265 0.728 0.729 0.792 0.938 0.771 0.917 0.86 0.933 0.5 1 

 
0.729 0.848 0.933 

 
267 0 0 0 0 0 0 0 0.033 0 0 

 
0.000 0.000 0.033 

 
269 0.272 0.271 0.146 0 0 0 0.12 0 0 0 

 
0.266 0.058 0.000 

 
271 0 0 0 0 0.021 0 0 0 0 0 

 
0.000 0.004 0.000 
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Appendix II. Haplotypes and variable sites for the mitochondrial control region (334pb) sequenced. 
mcr Variable sites 

Type 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 6 6 7 7 7 8 8 9 9 9 9 0 0 0 0 1 1 1 2 2 2 3 3 3 5 8 8 8 9 0 1 2 2 2 2 3 

3 6 4 5 6 0 4 6 8 1 2 9 0 7 9 9 1 2 3 4 2 4 7 2 7 2 3 5 6 2 5 7 9 0 2 8 0 1 2 2 5 7 5 1 6 7 3 5 4 0 2 3 4 1 

Hap_1 A C G A T T A A T T G G C T A G T C C G C A G T T G T C T A A G T C T T C C C T T T T A G T C C C A A T A T 

Hap_2 . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_3 . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_4 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_5 ? . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_6 . . . . . . G . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . C 

Hap_7 . . . . . . G . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_8 . . . . . . G . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_9 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ? . . . . . . . 

Hap_10 G . . . . . G . C . . . T . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_11 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . 

Hap_12 G . A . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_13 G . . . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_14 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . 

Hap_15 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . G . . . . . . . . . . . . . A . . . . . . . . . 

Hap_16 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . 

Hap_17 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_18 G . A . . G G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_19 G . A . . G G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_20 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . 

Hap_21 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . 

Hap_22 . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . A C . . . . . . . . . . . . . . . . . . . . . 

Hap_23 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Appendix II. Continued. 

mcr Variable sites 

Type 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 6 6 7 7 7 8 8 9 9 9 9 0 0 0 0 1 1 1 2 2 2 3 3 3 5 8 8 8 9 0 1 2 2 2 2 3 

3 6 4 5 6 0 4 6 8 1 2 9 0 7 9 9 1 2 3 4 2 4 7 2 7 2 3 5 6 2 5 7 9 0 2 8 0 1 2 2 5 7 5 1 6 7 3 5 4 0 2 3 4 1 

Hap_24 G . A . . . G . . . . . . . . A . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . T . . . . . G . 

Hap_25 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . 

Hap_26 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_27 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_28 G . A . . . G . . C . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . 

Hap_29 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . G . . . . . . . . 

Hap_30 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G . 

Hap_31 G . A . . . G G . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_32 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_33 G . A . . C G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_34 G . A . . . G G . . . . . C . . C . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_35 G . A . G . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_36 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_37 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_38 G . A . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_39 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . . 

hap_40 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_41 G . . . . . G . . . . . . . . . C . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_42 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_43 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_44 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_45 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . C . . . . . . . . . . . . . . G . . . 

Hap_46 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 
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Appendix II. Continued. 

mcr Variable sites 

Type 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 6 6 7 7 7 8 8 9 9 9 9 0 0 0 0 1 1 1 2 2 2 3 3 3 5 8 8 8 9 0 1 2 2 2 2 3 

3 6 4 5 6 0 4 6 8 1 2 9 0 7 9 9 1 2 3 4 2 4 7 2 7 2 3 5 6 2 5 7 9 0 2 8 0 1 2 2 5 7 5 1 6 7 3 5 4 0 2 3 4 1 

Hap_47 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_48 G . . . . . G . C . . . . . . . . T . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_49 

   
G . . . . . G . C . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G C . . 

Hap_50 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_51 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . . . T . . . . . . . . . . . G . . . 

Hap_52 G . . . . . G . C . . . . . . . . . . . . . T . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_53 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . T . G . . . 

Hap_54 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . T . . . . . . . . . . . . . G . . . 

Hap_55 G . . . . . G . C . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_56 G T . . . . G . C . . . . . . . . . . A . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . G . . . 

Hap_57 G . . . . . G . . . . . . . . . C . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_58 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . 

Hap_59 G . . . . . G . . . . . . . . . C . A . . . . . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_60 G . . . . . G . . . . A . . G . C . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . . 

Hap_61 G . A . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . T . . . . . . . . . . . . . . . . 

Hap_63 . . A . . . G . . . . . . . . . . . . . . . . . . . . . . . . A . . . . T . . . . . . . . . . . . . . . . . 

Hap_64 G . A . . . G . . . . . . C . . C . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_65 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_66 G . . . . . G . . . . A . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_67 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_68 G . A . . . G . . . . . . C . . C . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Appendix II. Continued. 

mcr Variable sites 

Type 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 6 6 7 7 7 8 8 9 9 9 9 0 0 0 0 1 1 1 2 2 2 3 3 3 5 8 8 8 9 0 1 2 2 2 2 3 

3 6 4 5 6 0 4 6 8 1 2 9 0 7 9 9 1 2 3 4 2 4 7 2 7 2 3 5 6 2 5 7 9 0 2 8 0 1 2 2 5 7 5 1 6 7 3 5 4 0 2 3 4 1 

Hap_69 . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C 

Hap_70 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C 

Hap_71 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . A . . . C . . . . . . . . . . . . . . . . . . 

Hap_72 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G . . . 

Hap_73 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . 

Hap_74 G . A . . . G . . . . . . C . . C . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_75 G . . G . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_76 G . A . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_77 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_78 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_79 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . C . . . . . . . . . . . 

Hap_80 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_81 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . 

Hap_82 G . . . . . G . . . . . . . . . C . . A . . . . . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_83 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_84 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . A . . . C . . . . . . . . . . . . . . . . . . 

Hap_85 G . . . . . G . . . . A . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_86 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . 

Hap_87 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_88 G . A . . . . . . . . . . C . . C . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . 

Hap_89 G . A . . . . . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_90 G . A . . . C . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Appendix II. Continued. 

mcr Variable sites 

Type 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 

0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 6 6 7 7 7 8 8 9 9 9 9 0 0 0 0 1 1 1 2 2 2 3 3 3 5 8 8 8 9 0 1 2 2 2 2 3 

3 6 4 5 6 0 4 6 8 1 2 9 0 7 9 9 1 2 3 4 2 4 7 2 7 2 3 5 6 2 5 7 9 0 2 8 0 1 2 2 5 7 5 1 6 7 3 5 4 0 2 3 4 1 

Hap_91 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . 

Hap_92 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . G . . . 

Hap_93 G . . . . . G . . . . A . . . . C . . . . . . . . . . . . . . . . . . . . . T . . . . . . . . . . . . . . . 

Hap_94 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_95 . . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C 

Hap_96 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_97 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . C . . . . . . . . . . . 

Hap_98 G . . G . . G . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_99 G . . G . . G . . . . . . . . . . . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_100 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . C . . . . . . . . . . . 

Hap_101 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . C T . . . . . . . . . . . . . . . . . 

Hap_102 G . . . C . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . 

Hap_103 G . A . . . G . . . . . . C . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_104 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . 

Hap_105 G . . . . . G . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_106 G . . . . . G . . . . . . . . . C . . A T . . . . A . . . G . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_107 G . . . . . G . . . . . . . . . C . . . . . . . . . . . . . . A . . . . . T . . . . . . . . . . . . . . . . 

Hap_108 G . . . . . G . . . . . . . . A C . . . . . . . . . . . . . . A . . . . . . . . . . . . . . . . . . . . . . 

Hap_109 G . . . . . G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . T . . . . 

Hap_110 - . . . . . G . . . . . . . . . . . . . . . T . . C . . . . . . . . . . . . . . . . . T . . T . . . G . . . 

Hap_111 G . . . . . G . C . A . . . . . . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . . . . . . 
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Appendix II. Continued. 

mcr Variable sites 
 

mcr Variable sites 

Type 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 
 Type 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 

3 3 3 3 4 4 5 5 6 6 6 7 7 8 9 9 0 1 1 1 1 2 
 

3 3 3 3 4 4 5 5 6 6 6 7 7 8 9 9 0 1 1 1 1 2 

4 6 7 8 0 3 3 4 2 5 6 2 6 9 1 6 2 2 3 4 5 9 
 

4 6 7 8 0 3 3 4 2 5 6 2 6 9 1 6 2 2 3 4 5 9 

Hap_1 C C G C C A T C G C C T T C G A T A A T C A 
 

Hap_24 . T . . . . C . . . . . . . . . . . . . . . 

Hap_2 . T . . . . . . . . . . . . . . . . . . . . 
 

Hap_25 . . . . . . . . . . . . . . . . . . . . . . 

Hap_3 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_26 . . . . . . . . . . . . C . . . . . . . . . 

Hap_4 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_27 . . . . . . . . A . . . . . . . . . . . . . 

Hap_5 . T . . . . . . . . . . . . . . . . . . . . 
 

Hap_28 . . . . . . . . . . . . . . . . . . . C . . 

Hap_6 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_29 . . . . . . . . . . . . . . . . . . . . . . 

Hap_7 . . A . . . . . . . . . . . . . . . . . . . 
 

Hap_30 . . . . . . . . . . . . . . . . . . . . . . 

Hap_8 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_31 . . . . . . . . . . . . . . . . . . . . . . 

Hap_9 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_32 . . . . . . . . . . . . . . . . G . . . . . 

Hap_10 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_33 . . . . . . . . . . . . . . . . . . . . . . 

Hap_11 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_34 . . . . . . . . . . . . . . . . . . . . . . 

Hap_12 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_35 . . . . . T . . . . . . . . . . . . . . . . 

Hap_13 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_36 . . . . . T . . . . . . . . . . . . . . T . 

Hap_14 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_37 . . . . . T . . . . . . . . . . . . . . . . 

Hap_15 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_38 . . . . . T . T . . . . . . . . . . . . . . 

Hap_16 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_39 . . . . . . . . . . . . . . . . . G . . . . 

Hap_17 . T . . . . . . . . . . . . . . . . . . . . 
 

hap_40 . . . . . . . . . . T . . . . . . . . . . . 

Hap_18 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_41 . . . . . . . . . . . . . . . . . . . . . . 

Hap_19 . T . . . . . . . . . . . . . . . . . . . . 
 

Hap_42 . . A . T . . . . . . . . . . . . . . . . . 

Hap_20 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_43 . . . . . . . . . . . . . . . . . . . . . . 

Hap_21 . . . . . . . . . . . . . . . . . . . . . . 
 

Hap_44 . . . . . . . . . . . . . . . . . . . . . . 

Hap_22 . T . . . . . . . . . . . . . . . . . . . . 
 

Hap_45 . . . . . . . . . . . . . . . . . . . . . . 
Hap_23 . . . . . . . . . T . . . . . . . . . . . . 

 
Hap_46 . . A . . . . . . . . . . . . . . . . . . . 

  



286 
 

Appendix II. Continued. 

mcr Variable sites 

 
mcr Variable sites 

Type 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 

 Type 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 

3 3 3 3 4 4 5 5 6 6 6 7 7 8 9 9 0 1 1 1 1 2 

 
3 3 3 3 4 4 5 5 6 6 6 7 7 8 9 9 0 1 1 1 1 2 

4 6 7 8 0 3 3 4 2 5 6 2 6 9 1 6 2 2 3 4 5 9 

 
4 6 7 8 0 3 3 4 2 5 6 2 6 9 1 6 2 2 3 4 5 9 

Hap_47 . . . . . . C . . . . . . . . . . . . . . . 

 
Hap_69 . . . . . . . . . . . . . . . . . . . . . . 

Hap_48 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_70 . . . . . . . . . . . . . . . . . . . . . . 

Hap_49 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_71 . . . . . . . . A . . . . . . . . . . . . . 

Hap_50 . . . . . . . . . . . . . . A . . . . . . . 

 
Hap_72 . . . . . . . . . . . . . . . . . . . . . . 

Hap_51 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_73 . . A . T . . . . . . . . . . . . . . . . G 

Hap_52 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_74 . . . . . . . . . . . . . . . . . . . . . . 

Hap_53 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_75 . T . . . . . . . . . . . . . . . . . . . . 

Hap_54 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_76 . . . . . . . T . . . . . . . . . . . . . . 

Hap_55 . T . . . . . . . . . . . . . . . . . . . . 

 
Hap_77 . . . . . . . . . . . . . . . G . . . . . . 

Hap_56 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_78 . . A . . . . . . . . . . . . . . . . . . . 

Hap_57 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_79 . . . . . . . . . . . . . . A . . . . . . . 

Hap_58 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_80 . . . . . . . . A . . . . . . . . . . . . . 

Hap_59 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_81 . T . . . . . . . . . . . . . . . . . . . . 

Hap_60 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_82 . . . . . . . . . . . . . . . . . . . . . . 

Hap_61 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_83 . T . . . . . . . . . . . . . . . . . . . . 

Hap_62 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_84 . . . T . . . . A . . . . . . . . . . . . . 

Hap_63 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_85 . T . . T . . . . . . . . . . . . . . . . . 

Hap_64 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_86 . . . . . . . . . . . . . . . . . . . . . . 

Hap_65 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_87 . . . . . . . . . . . . . . . . . . . . T . 

Hap_66 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_88 . . . . . . . . . . . . . . . . . . . . . . 

Hap_67 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_89 . . . . . . . . . . . . . . . . . . . . . . 

Hap_68 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_90 . . . . . . . . . . . . . . . . . . . . . . 
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Appendix II. Continued. 

mcr Variable sites 

 
mcr Variable sites 

Type 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 

 Type 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 

3 3 3 3 4 4 5 5 6 6 6 7 7 8 9 9 0 1 1 1 1 2 

 
3 3 3 3 4 4 5 5 6 6 6 7 7 8 9 9 0 1 1 1 1 2 

4 6 7 8 0 3 3 4 2 5 6 2 6 9 1 6 2 2 3 4 5 9 

 
4 6 7 8 0 3 3 4 2 5 6 2 6 9 1 6 2 2 3 4 5 9 

Hap_69 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_91 . . . . . . . . . . . . . . . . . . . . . . 

Hap_70 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_92 . . . . . . . . . . . . . . . . . . . . . . 

Hap_71 . . . . . . . . A . . . . . . . . . . . . . 

 
Hap_93 . . . . T . . . . . . . . . . . . . . . . . 

Hap_72 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_94 . . . . . . . . . . . . . . . . . . . . T . 

Hap_73 . . A . T . . . . . . . . . . . . . . . . G 

 
Hap_95 . . . . . . . . . . . . . . . . . . . . . . 

Hap_74 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_96 . . . . . . . . A . T . . . . . . . . . . . 

Hap_75 . T . . . . . . . . . . . . . . . . . . . . 

 
Hap_97 . . . . . . . . A . . . . . . . . . . . . . 

Hap_76 . . . . . . . T . . . . . . . . . . . . . . 

 
Hap_98 . . . . . . . . . . . . . . . . . . . . . . 

Hap_77 . . . . . . . . . . . . . . . G . . . . . . 

 
Hap_99 . . . . . . . . . . . . . . . G . . . . . . 

Hap_78 . . A . . . . . . . . . . . . . . . . . . . 

 
Hap_100 . . . . . . . . . . . . . . . . . . . . . . 

Hap_79 . . . . . . . . . . . . . . A . . . . . . . 

 
Hap_101 . . . . . . . . . . . . . . . . . . . . . . 

Hap_80 . . . . . . . . A . . . . . . . . . . . . . 

 
Hap_102 . . . . . . . . . . . . . . . . . . . . . . 

Hap_81 . T . . . . . . . . . . . . . . . . . . . . 

 
Hap_103 . . . . . . . . . . . C . . . . . . . . . . 

Hap_82 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_104 T . . . T . . . . . . . . . . . . . . . . . 

Hap_83 . T . . . . . . . . . . . . . . . . . . . . 

 
Hap_105 . . . . . . . . . . . . . . . . . . . . . . 

Hap_84 . . . T . . . . A . . . . . . . . . . . . . 

 
Hap_106 . . . . . . . . . . . . . . . . . . . . . . 

Hap_85 . T . . T . . . . . . . . . . . . . . . . . 

 
Hap_107 . . . . . . . . A . . . . . . . . . . . . . 

Hap_86 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_108 . . . . . . . . A . . . . . . . . . . . . . 

Hap_87 . . . . . . . . . . . . . . . . . . . . T . 

 
Hap_109 . . . . . . . . . . . . . . . . . G . . . . 

Hap_88 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_110 . . . . . . . . . . . . . . . . . . . . . . 

Hap_89 . . . . . . . . . . . . . . . . . . . . . . 

 
Hap_111 . . . . . . . . . . . . . . . . . . . . . . 

Hap_90 . . . . . . . . . . . . . . . . . . . . . . 
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Appendix III. Correspondence of haplotypes of this study and other previously published and 

accession numbers of GeneBank. 

Haplotypes (in this 
study) 

Haplotypes Reference 
GENEBANK 
Accession 

Hap_1 FrM Alfonsi et al 2012 HQ412587.1 

 
FrN Alfonsi et al 2012 JF461060.1 

 
S6 Tolley & Rosel 2006 AY262375.1 

 
S9 Tolley & Rosel 2006 AY262378.1 

 
XXVIII Viaud-Martínez et al 2007 EF063673.1 

Hap_2 S13 Tolley & Rosel 2006 AY262382.1 

 
XXXI Viaud-Martínez et al 2007 EF063676.1 

Hap_3 D Walton 1997 

 

 
FrI Alfonsi et al 2012 JF461058.1 

 
FrK Alfonsi et al 2012 JF461059.1 

 
FrL Alfonsi et al 2012 HQ412586.1 

 
GM90K18 Rosel et al 1999 AF311935.1 

 
N16 Tolley & Rosel 2006 GQ338869.1 

 
N4 Tolley et al 2001 AF311925.1 

 
N8 Tolley & Rosel 2006 GQ338862.1 

 
O Walton 1997 

 

 
S5 Tolley & Rosel 2006 AY262374.1 

 
S7 Tolley & Rosel 2006 AY262376.1 

 
S8 Tolley & Rosel 2006 AY262377.1 

 
V Walton 1997 

 

 
XXV Viaud-Martínez et al 2007 EF063670.1 

 
XXVI Viaud-Martínez et al 2007 EF063671.1 

 
XXVII Viaud-Martínez et al 2007 EF063672.1 

Hap_4 A Walton 1997 X91613.1 

 
E Walton 1997 

 

 
FrB Alfonsi et al 2012 JF461056.1 

 
FrC Alfonsi et al 2012 HQ412580.1 

 
FrD Alfonsi et al 2012 JF461057.1 

 
FrE Alfonsi et al 2012 HQ412581.1 

 
FrO Alfonsi et al 2012 JF461061.1 

 
N1 Tolley & Rosel 2006 AY262369.1 

 
N26 Tolley & Rosel 2006 GQ338874.1 

 
Pho1 Tiedemann et al 1996 Y13872.1 

 
Pho2 Tiedemann et al 1996 Y13875.1 

 
Pho24 Wiemann et al 2010 

 

 
Pho42 Wiemann et al 2010 

 

 
Pho7 Tiedemann et al 1996 Y13877.1 

 
S11 Tolley & Rosel 2006 AY262380.1 

 
XXIX Viaud-Martínez et al 2007 EF063674.1 

Hap_5 

   Hap_6 S16 Tolley & Rosel 2006 AY262385.1 
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Appendix III. Continued. 

Haplotypes (in this 
study) 

Haplotypes Reference 
GENEBANK 
Accession 

 
XXX Viaud-Martínez et al 2007 EF063675.1 

Hap_7 

   Hap_8 

   Hap_9 C Walton 1997 

 

 
FrF Alfonsi et al 2012 HQ412582.1 

 
GSL8921 Tolley et al 2001 FJ214755 

 
IC12 (GSL8902) Rosel et al 1999 FJ214743.1 

 
L Walton 1997 

 

 
N11 Tolley & Rosel 2006 GQ338865.1 

 
N22 Tolley & Rosel 2006 GQ338872.1 

 
Pho19 Wiemann et al 2010 

 

 
Pho4 Tiedemann et al 1996 Y13873.1  

 
Pho6 Tiedemann et al 1996 Y13880.1 

 
S1 Tolley & Rosel 2006 AY262370.1 

 
S12 (N12) Tolley & Rosel 2006 AY262381.1 

 
S2 Tolley & Rosel 2006 AY262371.1 

 
XX Viaud-Martínez et al 2007 EF063665.1 

Hap_10 II Viaud-Martínez et al 2007 EF063647.1 

Hap_11 AH Walton 1997 

 

 
FrA Alfonsi et al 2012 HQ412579.1 

 
N3 Tolley et al 2001 AF311924.1 

 
Pho45 Wiemann et al 2010 

 

 
XIX Viaud-Martínez et al 2007 EF063664.1 

Hap_12 B Walton 1997 

 

 
IC3 (NFD800859) Rosel et al 1999 FJ214766.1 

 
Pho3 Tiedemann et al 1996 Y13874.1 

 
Pho5 Tiedemann et al 1996 Y13876.1 

 
Pho8 Tiedemann et al 1996 Y13878.1 

Hap_13 Pho9 Tiedemann et al 1996 Y13879.1 

Hap_14 Pho10 Wiemann et al 2010 

 

 
Pho11 Wiemann et al 2010 

 Hap_15 Pho12 Wiemann et al 2010 

 Hap_16 Pho13 Wiemann et al 2010 

 Hap_17 Pho14 Wiemann et al 2010 

 

 
S14 (N18) Tolley & Rosel 2006 AY262383.1 

Hap_18 Pho15 Wiemann et al 2010 

 

 
Pho16 Wiemann et al 2010 

 hap_19 Pho17 Wiemann et al 2010 

 Hap_20 Pho18 Wiemann et al 2010 

 Hap_21 H Walton 1997 

 

 
IC32 (GM90K13) Rosel et al 1999 FJ214736.1 

 
N19 Tolley & Rosel 2006 GQ338871.1 
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Appendix III. Continued. 

Haplotypes (in this 
study) 

Haplotypes Reference 
GENEBANK 
Accession 

 
N20 Tolley et al 2001 AF311927.1 

 
Pho20 Wiemann et al 2010 

 Hap_21 XXIV Viaud-Martínez et al 2007 EF063669.1 

Hap_22 FrJ Alfonsi et al 2012 HQ412585.1 

 
N15 Tolley & Rosel 2006 GQ338868.1 

 
Pho23 Wiemann et al 2010 

 Hap_23 IC26 (GSL8915) Rosel et al 1999 FJ214751.1 

 
Pho25 Wiemann et al 2010 

 Hap_24 Pho26 Wiemann et al 2010 

 Hap_25 Pho27 Wiemann et al 2010 

 Hap_26 Pho28 Wiemann et al 2010 

 Hap_27 Pho29 Wiemann et al 2010 

 Hap_28 Pho30 Wiemann et al 2010 

 Hap_29 Pho32 Wiemann et al 2010 

 Hap_30 Pho33 Wiemann et al 2010 

 Hap_31 Pho34 Wiemann et al 2010 

 

 
Pho36 Wiemann et al 2010 

 Hap_32 Pho39 Wiemann et al 2010 

 Hap_33 Pho40 Wiemann et al 2010 

 

 
S3 Tolley & Rosel 2006 AY262372.1 

Hap_34 Pho41 Wiemann et al 2010 

 Hap_35 Pho46 Wiemann et al 2010 

 Hap_36 Pho47 Wiemann et al 2010 

 Hap_37 Pho48 Wiemann et al 2010 

 Hap_38 Pho49 Wiemann et al 2010 

 Hap_39 FrG Alfonsi et al 2012 HQ412583.1 

 
S4 Tolley & Rosel 2006 AY262373.1 

 
XXII Viaud-Martínez et al 2007 EF063667.1 

Hap_40 FrH Alfonsi et al 2012 HQ412584.1 

 
IC5 Tolley et al 2001 AF311932.1 

Hap_41 AE Walton 1997 

 

 
AI Walton 1997 

 

 
S10 Tolley & Rosel 2006 AY262379.1 

 
XXI Viaud-Martínez et al 2007 EF063666.1 

Hap_42 XXIII Viaud-Martínez et al 2007 EF063668.1 

Hap_43 III Viaud-Martínez et al 2007 EF063648.1 

 
XVI Viaud-Martínez et al 2007 EF063661.1 

Hap_44 I Viaud-Martínez et al 2007 EF063646.1 

 
VIII Viaud-Martínez et al 2007 EF063653.1 

 
XV Viaud-Martínez et al 2007 EF063660.1 

 
XXXII Viaud-Martínez et al 2007 EF063110.1 

Hap_45 XVIII Viaud-Martínez et al 2007 EF063663.1 
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Appendix III. Continued. 

Haplotypes (in this 
study) 

Haplotypes Reference 
GENEBANK 
Accession 

Hap_46 XIV Viaud-Martínez et al 2007 EF063659.1 

Hap_47 XIII Viaud-Martínez et al 2007 EF063658.1 

Hap_48 XII Viaud-Martínez et al 2007 EF063657.1 

Hap_49 XI Viaud-Martínez et al 2007 EF063656.1 

Hap_50 X Viaud-Martínez et al 2007 EF063655.1 

Hap_51 IX Viaud-Martínez et al 2007 EF063654.1 

Hap_52 VII Viaud-Martínez et al 2007 EF063652.1 

Hap_53 VI Viaud-Martínez et al 2007 EF063651.1 

Hap_54 V Viaud-Martínez et al 2007 EF063650.1 

Hap_55 IV Viaud-Martínez et al 2007 EF063649.1 

Hap_56 XVII Viaud-Martínez et al 2007 EF063662.1 

Hap_57 IC16 Tolley et al 2001 GQ338849.1 

Hap_57 K Walton 1997 

 Hap_58 M Walton 1997 

 Hap_59 P Walton 1997 

 Hap_60 R Walton 1997 

 Hap_61 W Walton 1997 

 Hap_62 X Walton 1997 

 Hap_63 Y 

  Hap_64 AB Walton 1997 

 

 
IC7 (GSL8905) Rosel et al 1999 FJ214745.1 

 
N29 (GSL8905) Rosel et al 1999 FJ214745.1 

Hap_65 AF Walton 1997 

 Hap_66 AG Walton 1997 

 Hap_67 AJ Walton 1997 

 Hap_68 AK Walton 1997 

 Hap_69 S15 Tolley & Rosel 2006 AY262384.1 

Hap_70 S17 Tolley & Rosel 2006 AY262386.1 

Hap_71 N2 Tolley & Rosel 2006 GQ338859.1 

Hap_72 IC28 Tolley et al 2001 GQ338855.1 

 
N5 Rosel et al 1999 AF311926.1 

Hap_73 N6 Tolley & Rosel 2006 GQ338860.1 

Hap_74 N7 Tolley & Rosel 2006 GQ338861.1 

Hap_75 N9 Tolley & Rosel 2006 GQ338863.1 

Hap_76 IC10 Tolley et al 2001 GQ338846.1 

Hap_76 N10 Tolley & Rosel 2006 GQ338864.1 

Hap_77 N13 Tolley & Rosel 2006 GQ338866.1 

Hap_78 N14 Tolley & Rosel 2006 GQ338867.1 

Hap_79 N17 Tolley & Rosel 2006 GQ338870.1 

Hap_80 N21 Tolley et al 2001 AF311928.1 

Hap_81 N23 Tolley et al 2001 AF311929.1 

Hap_82 N24 Tolley et al 2001 AF311930.1 

Hap_83 N25 Tolley & Rosel 2006 GQ338873.1 
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Appendix III. Continued. 

Haplotypes (in this 
study) 

Haplotypes Reference 
GENEBANK 
Accession 

Hap_84 N27 Tolley & Rosel 2006 GQ338875.1 

Hap_85 IC14 Tolley et al 2001 AF311933.1 

Hap_86 WGLD21 Rosel et al 1999 FJ214789.1 

Hap_87 IC30 Tolley et al 2001 GQ338857.1 

Hap_88 IC23 Tolley et al 2001 GQ338853.1 

Hap_89 WGLD39 Rosel et al 1999 FJ214791.1 

Hap_90 WGLD4 Rosel et al 1999 FJ214785.1 

Hap_91 WGLD50 Rosel et al 1999 FJ214793.1 

Hap_92 IC20 Tolley et al 2001 GQ338851.1 

Hap_93 IC1 Tolley et al 2001 AF311931.1 

Hap_94 IC29 Tolley et al 2001 GQ338856.1 

Hap_95 9Pp28 Rosel et al 1999 FJ214781.1 

Hap_96 GM90K02 Rosel et al 1999 AF311934.1 

Hap_97 IC31 Tolley et al 2001 GQ338858.1 

Hap_98 IC11 Tolley et al 2001 GQ338847.1 

Hap_99 IC18 Tolley et al 2001 GQ338850.1 

Hap_100 IC13 Tolley et al 2001 GQ338848.1 

Hap_101 IC2 Tolley et al 2001 GQ338845.1 

Hap_102 IC22 Tolley et al 2001 GQ338852.1 

Hap_103 IC25 (WGLD47) Rosel et al 1999 FJ214792.1 

Hap_104 IC15 (GM90B41) Rosel et al 1999 FJ214742.1 

Hap_105 IC6 (GSL8935)  Rosel et al 1999 FJ214759.1 

Hap_106 WGLD14 Rosel et al 1999 FJ214786.1 

Hap_107 IC8 (WGLD34) Rosel et al 1999 FJ214790.1 

Hap_108 IC24 (GM90K05) Rosel et al 1999 FJ214733.1 

hap_109 IC17 (NFD910740)  Rosel et al 1999 FJ214774.1 

Hap_110 WGLD17 Rosel et al 1999 FJ214788.1 

Hap_111 WGLD15 Rosel et al 1999 FJ214787.1 

 



293 
 

Appendix IV. Occurrence of harbour porpoise mitochondrial haplotypes in the 9 populations 

geographical regions, and for K= 4.Population names as in Fig. 11. 

mcr Population 
  

 
Population 

  

Type 
  

 
  

SP PT NE1 NE2 WGLD ICL WA AMS BS TOTAL 

 
Group 1 Group 2 Group 3 Group 4 TOTAL 

Hap_1 34 55 41 

      
130 

 
89 41 

  
130 

Hap_2 6 7 1 

      
14 

 
13 1 

  
14 

Hap_3 17 36 66 

 
5 2 

   
126 

 
53 66 7 

 
126 

Hap_4 2 

 
392 332 5 19 

   
750 

 
2 724 24 

 
750 

Hap_5 

 
1 

       
1 

 
1 

   
1 

Hap_6 1 5 

    
2 

  
8 

 
8 

   
8 

Hap_7 

 
1 

       
1 

 
1 

   
1 

Hap_8 

 
2 

       
2 

 
2 

   
2 

Hap_9 

  
101 9 6 6 

   
122 

  
110 12 

 
122 

Hap_10 

  
1 

     
1 2 

 
1 

  
1 2 

Hap_11 

  
13 

      
13 

  
13 

  
13 

Hap_12 

  
9 5 1 1 

   
16 

  
14 2 

 
16 

Hap_13 

  
2 1 

     
3 

  
3 

  
3 

Hap_14 

   
6 

     
6 

  
6 

  
6 

Hap_15 

   
1 

     
1 

  
1 

  
1 

Hap_16 

   
2 

     
2 

  
2 

  
2 

Hap_17 

 
1 1 12 

     
14 

 
1 13 

  
14 

Hap_18 

   
4 

     
4 

  
4 

  
4 

Hap_19 

   
1 

     
1 

  
1 

  
1 

Hap_20 

   
3 

     
3 

  
3 

  
3 

Hap_21 

  
8 2 3 8 

   
21 

 
8 2 11 

 
21 

Hap_22 

  
2 1 

     
3 

  
3 

  
3 

Hap_23 

   
3 

 
1 

   
4 

  
3 1 

 
4 

Hap_24 

  
1 

      
1 

  
1 

  
1 

Hap_25 

   
10 

     
10 

  
10 

  
10 

Hap_26 

  
1 

      
1 

  
1 

  
1 

Hap_27 

  
1 

      
1 

  
1 

  
1 

Hap_28 

   
3 

     
3 

  
3 

  
3 

Hap_29 

  
2 1 

     
3 

  
3 

  
3 

Hap_30 

  
1 

      
1 

  
1 

  
1 

Hap_31 

  
1 1 

     
2 

  
2 

  
2 

Hap_32 

  
1 

      
1 

  
1 

  
1 

Hap_33 

  
2 

      
2 

  
2 

  
2 

Hap_34 

  
1 

      
1 

  
1 

  
1 

Hap_35 

   
1 

     
1 

  
1 

  
1 

Hap_36 

   
1 

     
1 

  
1 

  
1 

Hap_37 

   
1 

     
1 

  
1 

  
1 

Hap_38       1           1 

 
  1     1 

Hap_39 

  
7 

      
7 

  
7 

  
7 
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Appendix IV. Continued. 

mcr 
Population 

  

 
Population 

  

Type 

  

 

  

SP PT 
NE
1 NE2 WGLD ICL WA AMS BS TOTAL 

 
Group 1 Group 2 Group 3 Group 4 TOTAL 

hap_40 

  
1 

  
2 

   
3 

  
1 2 

 
3 

Hap_41 

  
6 

      
6 

  
6 

  
6 

Hap_42 

  
1 

      
1 

  
1 

  
1 

Hap_43 

        
2 2 

    
2 2 

Hap_44 

       
6 79 85 

    
85 85 

Hap_45 

       
3 

 
3 

    
3 3 

Hap_46 

        
1 1 

    
1 1 

Hap_47 

        
1 1 

    
1 1 

Hap_48 

        
1 1 

    
1 1 

Hap_49 

        
5 5 

    
5 5 

Hap_50 

        
4 4 

    
4 4 

Hap_51 

        
2 2 

    
2 2 

Hap_52 

        
1 1 

    
1 1 

Hap_53 

        
1 1 

    
1 1 

Hap_54 

        
1 1 

    
1 1 

Hap_55 

        
3 3 

    
3 3 

Hap_56 

        
2 2 

    
2 2 

Hap_57 

  
1 

  
2 

   
3 

  
1 2 

 
3 

Hap_58 

  
5 

      
5 

  
5 

  
5 

Hap_59 

  
4 

      
4 

  
4 

  
4 

Hap_60 

  
2 

      
2 

  
2 

  
2 

Hap_61 

  
2 

      
2 

  
2 

  
2 

Hap_62 

  
6 

      
6 

  
6 

  
6 

Hap_63 

  
2 

      
2 

  
2 

  
2 

Hap_64 

  
2 

  
2 

   
4 

  
2 2 

 
4 

Hap_65 

  
1 

      
1 

  
1 

  
1 

Hap_66 

  
1 

      
1 

  
1 

  
1 

Hap_67 

  
2 

      
2 

  
2 

  
2 

Hap_68 

  
1 

      
1 

  
1 

  
1 

Hap_69 

      
2 

  
2 

 
2 

   
2 

Hap_70 

      
1 

  
1 

 
1 

   
1 

Hap_71 

  
1 

  
1 

   
2 

  
1 1 

 
2 

Hap_72 

  
1 

 
2 1 

   
4 

  
1 3 

 
4 

Hap_73 

  
1 

      
1 

  
1 

  
1 

Hap_74 

  
1 

      
1 

  
1 

  
1 

Hap_75 

  
2 

      
2 

  
2 

  
2 

Hap_76 

  
1 

  
2 

   
3 

  
1 2 

 
3 

Hap_77 

  
1 

      
1 

  
1 

  
1 

Hap_78     2             2     2     2 

Hap_79 

  
2 

  
1 

   
3 

  
2 1 

 
3 
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Appendix IV. Continued. 

mcr 
Population 

  

 
Population 

  

Type 

  

 

  

SP PT 
NE
1 NE2 WGLD ICL WA AMS BS TOTAL 

 
Group 1 Group 2 Group 3 Group 4 TOTAL 

Hap_80 

  
1 

 
4 3 

   
8 

  
1 7 

 
8 

Hap_81 

  
1 

 
3 

    
4 

  
1 3 

 
4 

Hap_82 

  
1 

 
2 

    
3 

  
1 2 

 
3 

Hap_83 

  
1 

      
1 

  
1 

  
1 

Hap_84 

  
1 

  
1 

   
2 

  
1 1 

 
2 

Hap_85 

  
1 

 
2 1 

   
4 

  
1 3 

 
4 

Hap_86 

    
1 

    
1 

   
1 

 
1 

Hap_87 

     
3 

   
3 

   
3 

 
3 

Hap_88 

     
1 

   
1 

   
1 

 
1 

Hap_89 

    
1 

    
1 

   
1 

 
1 

Hap_90 

    
1 

    
1 

   
1 

 
1 

Hap_91 

    
1 

    
1 

   
1 

 
1 

Hap_92 

     
1 

   
1 

   
1 

 
1 

Hap_93 

     
2 

   
2 

   
2 

 
2 

Hap_94 

     
1 

   
1 

   
1 

 
1 

Hap_95 

    
3 

    
3 

   
3 

 
3 

Hap_96 

    
2 

    
2 

   
2 

 
2 

Hap_97 

     
1 

   
1 

   
1 

 
1 

Hap_98 

     
1 

   
1 

   
1 

 
1 

Hap_99 

     
1 

   
1 

   
1 

 
1 

Hap_100 

     
1 

   
1 

   
1 

 
1 

Hap_101 

     
1 

   
1 

   
1 

 
1 

Hap_102 

     
1 

   
1 

   
1 

 
1 

Hap_103 

    
1 1 

   
2 

   
2 

 
2 

Hap_104 

    
2 1 

   
3 

   
3 

 
3 

Hap_105 

     
1 

   
1 

   
1 

 
1 

Hap_106 

    
1 

    
1 

   
1 

 
1 

Hap_107 

    
1 1 

   
2 

   
2 

 
2 

Hap_108 

    
1 

    
1 

   
1 

 
1 

Hap_109 

    
1 

    
1 

   
1 

 
1 

Hap_110 

    
1 

    
1 

   
1 

 
1 

Hap_111         1         1       1   1 
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Appendix V. Relative frequencies of harbour porpoise mitochondrial haplotypes for K= 4 and 9 populations. Population names as in Fig. 11. 

mcr Population 

 
mcr Population 

Type  Type SP PT NE1 NE2 WGLD ICL WA AMS BS 

 
Group 1 Group 2 Group 3 Group 4 

N 60 108 715 401 47 75 5 4 104 

 
N 173 1107 123 108 

Hap_1 0.567 0.509 0.057 0 0 0 0 0 0 

 
Hap_1 0.514 0.037 0 0 

Hap_2 0.1 0.065 0.001 0 0 0 0 0 0 

 
Hap_2 0.075 0.001 0 0 

Hap_3 0.283 0.333 0.092 0 0.106 0.027 0 0 0 

 
Hap_3 0.306 0.060 0.057 0 

Hap_4 0.033 0 0.548 0.828 0.106 0.253 0 0 0 

 
Hap_4 0.012 0.654 0.195 0 

Hap_5 0 0.009 0 0 0 0 0 0 0 

 
Hap_5 0.006 0 0 0 

Hap_6 0.017 0.046 0 0 0 0 0.400 0 0 

 
Hap_6 0.046 0 0 0 

Hap_7 0 0.009 0 0 0 0 0 0 0 

 
Hap_7 0.006 0 0 0 

Hap_8 0 0.019 0 0 0 0 0 0 0 

 
Hap_8 0.012 0 0 0 

Hap_9 0 0 0.141 0.022 0.128 0.080 0 0 0 

 
Hap_9 0 0.091 0.098 0 

Hap_10 0 0 0.001 0 0 0 0 0 0.010 

 
Hap_10 0 0.001 0 0.009 

Hap_11 0 0 0.018 0 0 0 0 0 0 

 
Hap_11 0 0.012 0 0 

Hap_12 0 0 0.013 0.012 0.0213 0.013 0 0 0 

 
Hap_12 0 0.013 0.016 0 

Hap_13 0 0 0.003 0.002 0 0 0 0 0 

 
Hap_13 0 0.003 0 0 

Hap_14 0 0 0 0.015 0 0 0 0 0 

 
Hap_14 0 0.005 0 0 

Hap_15 0 0 0 0.00249 0 0 0 0 0 

 
Hap_15 0 0.001 0 0 

Hap_16 0 0 0 0.005 0 0 0 0 0 

 
Hap_16 0 0.002 0 0 

Hap_17 0 0.009 0.001 0.030 0 0 0 0 0 

 
Hap_17 0.006 0.012 0 0 

Hap_18 0 0 0 0.010 0 0 0 0 0 

 
Hap_18 0 0.004 0 0 

Hap_19 0 0 0 0.003 0 0 0 0 0 

 
Hap_19 0 0.001 0 0 

Hap_20 0 0 0 0.007 0 0 0 0 0 

 
Hap_20 0 0.003 0 0 

Hap_21 0 0 0.011 0.005 0.064 0.107 0 0 0 

 
Hap_21 0 0.009 0.089 0 

Hap_22 0 0 0.003 0.003 0 0 0 0 0 

 
Hap_22 0 0.003 0 0 

Hap_28 0 0 0 0.007 0 0 0 0 0 

 
Hap_28 0 0.003 0 0 

Hap_29 0 0 0.003 0.002 0 0 0 0 0 

 
Hap_29 0 0.003 0 0 

Hap_30 0 0 0.001 0 0 0 0 0 0 

 
Hap_30 0 0.001 0 0 

Hap_31 0 0 0.001 0.002 0 0 0 0 0 

 
Hap_31 0 0.002 0 0 

Hap_32 0 0 0.001 0 0 0 0 0 0 

 
Hap_32 0 0.001 0 0 

Hap_33 0 0 0.003 0 0 0 0 0 0 

 
Hap_33 0 0.002 0 0 

 Hap_34 0 0 0.001 0 0 0 0 0 0 

 
Hap_34 0 0.001 0 0 

Hap_35 0 0 0 0.002 0 0 0 0 0 

 
Hap_35 0 0.001 0 0 

Hap_36 0 0 0 0.002 0 0 0 0 0 

 
Hap_36 0 0.001 0 0 

Hap_37 0 0 0 0.002 0 0 0 0 0 

 
Hap_37 0 0.001 0 0 
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Appendix V. Continued. 

mcr Population 

 
mcr Population 

Type  Type SP PT NE1 NE2 WGLD ICL WA AMS BS 

 
Group 1 Group 2 Group 3 Group 4 

N 60 108 715 401 47 75 5 4 104 

 
N 173 1107 123 108 

Hap_38 0 0 0 0.002 0 0 0 0 0 

 
Hap_38 0 0.001 0 0 

Hap_39 0 0 0.010 0 0 0 0 0 0 

 
Hap_39 0 0.006 0 0 

hap_40 0 0 0.001 0 0 0.027 0 0 0 

 
hap_40 0 0.001 0.016 0 

Hap_41 0 0 0.008 0 0 0 0 0 0 

 
Hap_41 0 0.005 0 0 

Hap_42 0 0 0.001 0 0 0 0 0 0 

 
Hap_42 0 0.001 0 0 

Hap_43 0 0 0 0 0 0 0 0 0.019 

 
Hap_43 0 0 0 0.018 

Hap_44 0 0 0 0 0 0 0 0.250 0.760 

 
Hap_44 0 0 0 0.009 

Hap_45 0 0 0 0 0 0 0 0.750 0 

 
Hap_45 0 0 0 0.028 

Hap_46 0 0 0 0 0 0 0 0 0.010 

 
Hap_46 0 0 0 0.009 

Hap_47 0 0 0 0 0 0 0 0 0.010 

 
Hap_47 0 0 0 0.009 

Hap_48 0 0 0 0 0 0 0 0 0.010 

 
Hap_48 0 0 0 0.009 

Hap_49 0 0 0 0 0 0 0 0 0.050 

 
Hap_49 0 0 0 0.046 

Hap_50 0 0 0 0 0 0 0 0 0.040 

 
Hap_50 0 0 0 0.037 

Hap_51 0 0 0 0 0 0 0 0 0.019 

 
Hap_51 0 0 0 0.018 

Hap_52 0 0 0 0 0 0 0 0 0.010 

 
Hap_52 0 0 0 0.009 

Hap_53 0 0 0 0 0 0 0 0 0.010 

 
Hap_53 0 0 0 0.009 

Hap_54 0 0 0 0 0 0 0 0 0.010 

 
Hap_54 0 0 0 0.009 

Hap_55 0 0 0 0 0 0 0 0 0.030 

 
Hap_55 0 0 0 0.028 

Hap_56 0 0 0 0 0 0 0 0 0.019 

 
Hap_56 0 0 0 0.018 

Hap_57 0 0 0.001 0 0 0.027 0 0 0 

 
Hap_57 0 0.001 0.016 0 

Hap_58 0 0 0.007 0 0 0 0 0 0 

 
Hap_58 0 0.004 0 0 

Hap_59 0 0 0.006 0 0 0 0 0 0 

 
Hap_59 0 0.004 0 0 

Hap_60 0 0 0.003 0 0 0 0 0 0 

 
Hap_60 0 0.002 0 0 

Hap_61 0 0 0.0028 0 0 0 0 0 0 

 
Hap_61 0 0.002 0 0 

Hap_62 0 0 0.008 0 0 0 0 0 0 

 
Hap_62 0 0.005 0 0 

Hap_63 0 0 0.003 0 0 0 0 0 0 

 
Hap_63 0 0.002 0 0 

Hap_64 0 0 0.003 0 0 0.027 0 0 0 

 
Hap_64 0 0.002 0.016 0 

Hap_65 0 0 0.001 0 0 0 0 0 0 

 
Hap_65 0 0.001 0 0 

Hap_66 0 0 0.001 0 0 0 0 0 0 

 
Hap_66 0 0.001 0 0 

Hap_67 0 0 0.003 0 0 0 0 0 0 

 
Hap_67 0 0.002 0 0 

Hap_68 0 0 0.001 0 0 0 0 0 0 

 
Hap_68 0 0.001 0 0 

Hap_69 0 0 0 0 0 0 0.400 0 0 

 
Hap_69 0.012 0 0 0 
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Appendix V. Continued. 

mcr Population 

 
mcr Population 

Type  Type SP PT NE1 NE2 WGLD ICL WA AMS BS 

 
Group 1 Group 2 Group 3 Group 4 

N 60 108 715 401 47 75 5 4 104 

 
N 173 1107 123 108 

Hap_70 0 0 0 0 0 0 0.200 0 0 

 
Hap_70 0.006 0 0 0 

Hap_71 0 0 0.001 0 0 0.013 0 0 0 

 
Hap_71 0 0.001 0.008 0 

Hap_72 0 0 0.001 0 0.043 0.013 0 0 0 

 
Hap_72 0 0.001 0.024 0 

Hap_73 0 0 0.001 0 0 0 0 0 0 

 
Hap_73 0 0.001 0 0 

Hap_74 0 0 0.001 0 0 0 0 0 0 

 
Hap_74 0 0.001 0 0 

Hap_75 0 0 0.003 0 0 0 0 0 0 

 
Hap_75 0 0.002 0 0 

Hap_76 0 0 0.001 0 0 0.027 0 0 0 

 
Hap_76 0 0.001 0.016 0 

Hap_77 0 0 0.001 0 0 0 0 0 0 

 
Hap_77 0 0.001 0 0 

Hap_78 0 0 0.003 0 0 0 0 0 0 

 
Hap_78 0 0.002 0 0 

Hap_79 0 0 0.003 0 0 0.013 0 0 0 

 
Hap_79 0 0.002 0.008 0 

Hap_80 0 0 0.001 0 0.085 0.040 0 0 0 

 
Hap_80 0 0.001 0.0569 0 

Hap_81 0 0 0.001 0 0.064 0 0 0 0 

 
Hap_81 0 0.001 0.024 0 

Hap_82 0 0 0.001 0 0.043 0 0 0 0 

 
Hap_82 0 0.001 0.016 0 

Hap_83 0 0 0.001 0 0 0 0 0 0 

 
Hap_83 0 0.001 0 0 

Hap_84 0 0 0.001 0 0 0.013 0 0 0 

 
Hap_84 0 0.001 0.008 0 

Hap_85 0 0 0.001 0 0.043 0.013 0 0 0 

 
Hap_85 0 0.001 0.016 0 

Hap_86 0 0 0 0 0.021 0 0 0 0 

 
Hap_86 0 0 0.024 0 

Hap_87 0 0 0 0 0 0.040 0 0 0 

 
Hap_87 0 0 0.024 0 

Hap_88 0 0 0 0 0 0.013 0 0 0 

 
Hap_88 0 0 0.008 0 

Hap_89 0 0 0 0 0.021 0 0 0 0 

 
Hap_89 0 0 0.008 0 

Hap_90 0 0 0 0 0.021 0 0 0 0 

 
Hap_90 0 0 0.008 0 

Hap_91 0 0 0 0 0.021 0 0 0 0 

 
Hap_91 0 0 0.008 0 

Hap_92 0 0 0 0 0 0.013 0 0 0 

 
Hap_92 0 0 0.008 0 

Hap_93 0 0 0 0 0 0.027 0 0 0 

 
Hap_93 0 0 0.016 0 

Hap_94 0 0 0 0 0 0.013 0 0 0 

 
Hap_94 0 0 0.008 0 

Hap_95 0 0 0 0 0.064 0 0 0 0 

 
Hap_95 0 0 0.0244 0 

Hap_96 0 0 0 0 0.043 0 0 0 0 

 
Hap_96 0 0 0.016 0 

Hap_97 0 0 0 0 0 0.013 0 0 0 

 
Hap_97 0 0 0.008 0 

Hap_98 0 0 0 0 0 0.013 0 0 0 

 
Hap_98 0 0 0.008 0 

Hap_99 0 0 0 0 0 0.013 0 0 0 

 
Hap_99 0 0 0.008 0 

Hap_100 0 0 0 0 0 0.013 0 0 0 

 
Hap_100 0 0 0.008 0 
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Appendix V. Continued. 

mcr Population 

 
mcr Population 

Type  Type SP PT NE1 NE2 WGLD ICL WA AMS BS 

 
Group 1 Group 2 Group 3 Group 4 

N 60 108 715 401 47 75 5 4 104 

 
N 173 1107 123 108 

Hap_101 0 0 0 0 0 0.013 0 0 0 

 
Hap_101 0 0 0.008 0 

Hap_102 0 0 0 0 0 0.013 0 0 0 

 
Hap_102 0 0 0.008 0 

Hap_103 0 0 0 0 0.021 0.013 0 0 0 

 
Hap_103 0 0 0.016 0 

Hap_104 0 0 0 0 0.043 0.013 0 0 0 

 
Hap_104 0 0 0.0244 0 

Hap_105 0 0 0 0 0 0.013 0 0 0 

 
Hap_105 0 0 0.008 0 

Hap_106 0 0 0 0 0.021 0 0 0 0 

 
Hap_106 0 0 0.008 0 

Hap_107 0 0 0 0 0.021 0.013 0 0 0 

 
Hap_107 0 0 0.016 0 

Hap_108 0 0 0 0 0 0.013 0 0 0 

 
Hap_108 0 0 0.008 0 

Hap_109 0 0 0 0 0 0.013 0 0 0 

 
Hap_109 0 0 0.008 0 

Hap_110 0 0 0 0 0 0.013 0 0 0 

 
Hap_110 0 0 0.008 0 

Hap_111 0 0 0 0 0 0.013 0 0 0 

 
Hap_111 0 0 0.008 0 
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Appendix VI. Models for the study of the covariates affecting the observer. P-values: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1. Covariates: width of field 

(width_field), speed, Douglas, Beaufort, Easting component of the wind (Wind Easting, Sen_WRad_), Northing component of the wind (Wind Northing, 

Cos_WRad_), visibility, height of the swell (Swell height), ship. 

Model 
Covariate 

Dev. Expl. AIC width 
field 

Speed Douglas Beaufort 
Wind 

Easting 
Wind 

Northing 
Visibility 

Swell 
height 

Ship 

 
Y~ 1 + s(Douglas. k = 3) + s(Speed) + s(Sen_WRad_. k = 3)  

.97e-06 
*** 

1.32e-15 
***  

0.314 
    

14.20% 257.06 

Y~ 1 + s(Douglas. k = 3) + s(Speed) + s(Cos_WRad_. k = 3)  
4.39e-06 

*** 
1.25e-15 

***   
0.493 

   
14.20% 257.12 

Y ~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Sen_WRad_. k = 3) 

1.94e-05 
*** 

9.56e-06 
*** 

9.32e-12 
***  

0.273 
    

14.80% 257.26 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Cos_WRad_. k = 3) 

3.20e-05 
*** 

8.58e-06 
*** 

1.50e-11 
***   

0.935 
   

14.70% 257.42 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Visib. k = 3) + 
s(Sen_WRad_. k = 3) 

2.17e-07 
*** 

5.09e-06 
*** 

1.54e-10 
***  

0.10951 
 

0.00105 
**   

15.30% 257.91 

Y ~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Visib. k = 3) + 
s(Cos_WRad_. k = 3) 

8.43e-07 
*** 

4.71e-06 
*** 

1.70e-10 
***   

0.80441 
0.00219 

**   
15.20% 258.22 

Y~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Speed) + s(Cos_WRad_. k = 3)  
3.05e-05 

*** 
9.27e-15 

***   
0.38 

  
0.0104  

* 
14.40% 258.26 

Y ~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Speed) + s(Sen_WRad_. k = 3)  
3.18e-05 

*** 
1.03e-14 

***  
0.397 

   
0.0137  

* 
14.40% 258.27 

Y~ 1 + s(Douglas. k = 3) + s(Speed) + s(Beaufort. k = 3) + s(Sen_WRad_. k = 3)  
1.64e-05 

*** 
8.38e-11 

*** 
0.0669 0.2833 

    
14.30% 258.72 

Y~ 1 + s(Douglas. k = 3) + s(Speed) + s(Beaufort. k = 3) + s(Cos_WRad_. k = 3)  
1.45e-05 

*** 
7.94e-11 

*** 
0.0701 

 .  
0.4743 

   
14.30% 258.79 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Beaufort. k = 3) + 
s(Sen_WRad_. k = 3) 

0.000124 
*** 

9.26e-06 
*** 

1.42e-09 
*** 

0.404126 0.267772 
    

14.80% 259.21 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Beaufort. k = 3) + 
s(Cos_WRad_. k = 3) 

7.91e-05 
*** 

1.08e-05 
*** 

< 2e-16 
*** 

0.232 
 

0.837 
   

14.10% 260.06 

Y~ 1 + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3) + s(Sen_WRad_. k = 3) + 
s(Douglas. k = 3)  

3.42e-06 
*** 

1.31e-10 
*** 

0.0763 
 . 

0.1854 
 

0.0790 
 .   

14.50% 260.26 
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Appendix VI. Continued. 

Model 
Covariate 

Dev. Expl. AIC width 
field 

Speed Douglas Beaufort 
Wind 

Easting 
Wind 

Northing 
Visibility 

Swell 
height 

Ship 

Y~ 1 + s(Width_Field. k = 3) + s(Douglas. k = 3) + s(Sen_WRad_. k = 3) 
2.87e-07 

***  
< 2e-16 

***  0.34     11.50% 260.92 

Y~ 1 + s(Width_Field. k = 3) + s(Douglas. k = 3) + s(Cos_WRad_. k = 3) 
3.36e-07 
***  

< 2e-16 
***   

0.488 
   

11.50% 260.98 

Y~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Sen_WRad_. k = 3) 
  <2e-16 

*** 
 0.551    0.000142 

*** 
11.30% 261.45 

Y ~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Cos_WRad_. k = 3) 
  <2e-16 

*** 
  0.553   0.000115 

*** 
11.30% 261.45 

Y~ 1 + s(Douglas. k = 3) + s(Sen_WRad_. k = 3) 
  <2e-16 

*** 
 0.471     10.50 261.86 

Y~ 1 + s(Douglas. k = 3) + s(Cos_WRad_. k = 3) 
  <2e-16 

*** 
  0.911    10.50% 261.92 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Visib. k = 3) + s(Sen_WRad_. k = 3) 
< 2e-16 

*** 
1.28e-06 

*** 
  0.0504  2.66e-11 

*** 
  11.50% 267.04 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Visib. k = 3) + s(Cos_WRad_. k = 3) 
< 2e-16 

*** 
1.49e-06 

*** 
   0.665 3.63e-10 

*** 
  11.30% 267.51 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Beaufort. k = 3) + s(Sen_WRad_. k 
= 3) 

1.47e-09 
*** 

7.63e-06 
*** 

 1.52e-09 
*** 

0.236     
10.50% 268.36 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Beaufort. k = 3) + s(Cos_WRad_. k 
= 3) 

1.47e-09 
*** 

7.31e-06 
*** 

 3.74e-09 
*** 

 0.524    
10.40% 268.47 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Cos_WRad_. k = 3) 
< 2e-16 

*** 
1.05e-05 

*** 
   0.183    9.59% 270.24 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Sen_WRad_. k = 3) 
< 2e-16 

*** 
1.03e-05 

*** 
  0.302     9.58% 270.31 

Y ~ 1 + s(Beaufort. k = 3) + s(Speed) + s(Sen_WRad_. k = 3) 
 3.89e-06 

*** 
 < 2e-16 

*** 
0.159     9.13% 270.31 

Y~ 1 + s(Beaufort. k = 3) + s(Speed) + s(Cos_WRad_. k = 3) 
 3.17e-06 

*** 
 < 2e-16 

*** 
 0.525    9.07% 270.47 

Y~ 1 + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3) + s(Sen_WRad_. k = 3) 
 2.14e-06 

*** 
 < 2e-16 

*** 
0.06716 

. 
 0.00138 

** 
  9.61% 270.97 

Y~ 1 + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3) + s(Cos_WRad_. k = 3) 
 1.82e-06 

*** 
 < 2e-16 

*** 
 0.28562 0.00197 

** 
  9.53% 271.2 

 



302 
 

Appendix VI. Continued. 

Model 
Covariate 

Dev. Expl. AIC width 
field 

Speed Douglas Beaufort 
Wind 

Easting 
Wind 

Northing 
Visibility 

Swell 
height 

Ship 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed) + s(Sen_WRad_. k = 3) 
 2.16e-05 

*** 
 4.97e-16 

*** 
0.191    0.105 

9.18% 271.99 

Y ~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed) + s(Cos_WRad_. k = 3) 
 1.99e-05 

*** 
 5.43e-16 

*** 
 0.413   0.078 

. 
9.15% 272.1 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3) + 
s(Sen_WRad_. k = 3) 

 1.09e-05 
*** 

 6.82e-15 
*** 

0.07802 
 . 

 0.00161 
** 

 0.121 
9.66% 272.69 

Y ~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3) + 
s(Cos_WRad_. k = 3) 

 1.16e-05 
*** 

 8.56e-15 
*** 

 0.20589 0.00208 
** 

 0.082  
. 

9.60% 272.84 

Y~ 1 + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3) + s(Sen_WRad_. k = 3) + 
s(Cos_WRad_. k = 3) 

 8.9e-07 
*** 

 < 2e-16 
*** 

0.1065 0.51375 0.00114 
** 

  9.64% 272.9 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Sen_WRad_. k = 3)    1.13e-15 
*** 

0.204    7.22e-05 
*** 

6.59% 274.97 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Cos_WRad_. k = 3)    1.27e-15 
*** 

 0.576   4.42e-05 
*** 

6.53% 275.14 

Y ~ 1 + s(Width_Field. k = 3) + s(Cos_WRad_. k = 3) 
<2e-16 

*** 
    0.0136 

 * 
   5.65% 275.65 

Y~ 1 + s(Beaufort. k = 3) + s(Sen_WRad_. k = 3)    <2e-16 
*** 

0.107     5.60% 275.8 

Y~ 1 + s(Beaufort. k = 3) + s(Cos_WRad_. k = 3)    <2e-16 
*** 

0.864     5.48% 276.14 

Y ~ 1 + s(Width_Field. k = 3) + s(Sen_WRad_. k = 3) 
<2e-16 

*** 
   0.248     5.44% 276.27 

Y ~ 1 + s(Beaufort. k = 3) + s(Visib. k = 3) + s(Sen_WRad_. k = 3)    <2e-16 
*** 

0.0627 
 . 

 0.0104 
 * 

  5.89% 276.97 

Y~ 1 + s(Beaufort. k = 3) + s(Visib. k = 3) + s(Cos_WRad_. k = 3)    <2e-16 
*** 

 0.8531 0.0177  
* 

  5.73% 277.43 

Y ~ 1 + s(Douglas. k = 3) + s(Speed)  9.56e-06 
*** 

4.46e-15 
*** 

      12.90% 278.44 

Y~ 1 + s(Douglas. k = 3) + s(Speed) + s(Beaufort. k = 3)  4.93e-06 
*** 

1.79e-11 
*** 

0.00194 
** 

     13.90% 278.55 

Y ~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) 
0.000178 

*** 
1.77e-05 

*** 
5.44e-12 

*** 
      13.30% 279.07 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Beaufort. k = 3) 
0.000115 

*** 
9.13e-06 

*** 
4.61e-10 

*** 
0.002314 

** 
     14.30% 279.15 

Y~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Speed)  2.84e-05 
*** 

2.76e-14 
*** 

     0.0084 
** 

13.20% 279.47 
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Appendix VI. Continued. 

Model 
Covariate 

Dev. Expl. AIC width 
field 

Speed Douglas Beaufort 
Wind 

Easting 
Wind 

Northing 
Visibility 

Swell 
height 

Ship 

Y ~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Visib. k = 3) 
6.79e-06 

*** 
1.40e-05 

*** 
5.86e-11 

*** 
   0.00858 

** 
  13.60% 280.18 

Y~ 1 + s(Douglas. k = 3) + s(Speed) + s(Visib. k = 3)  3.26e-06 
*** 

1.55e-14 
*** 

   0.23   13.00% 280.19 

Y~ 1 + s(Douglas. k = 3) + s(Speed) + s(Beaufort. k = 3) + s(Visib. k = 3)  4.32e-06 
*** 

2.38e-11 
*** 

0.00227 
** 

  0.31764   13.90% 280.36 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + s(Visib. k = 3) + 
s(Beaufort. k = 3) 

5.16e-06 
*** 

2.69e-06 
*** 

1.14e-09 
*** 

0.00338 
** 

  0.01323 
* 

  
14.60% 280.37 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) 
0.00146 

** 
7.08e-05 

*** 
8.38e-12 

*** 
     0.0386 * 

13.50% 280.48 

Y ~ 1 + as.factor(Ship) + s(Speed) + s(Visib. k = 3) + s(Sen_WRad_. k = 3)  1.05e-05 
*** 

  0.183  8.81e-06 
*** 

 0.000148 
*** 

6.23% 280.5 

Y ~ 1 + as.factor(Ship) + s(Speed) + s(Visib. k = 3) + s(Cos_WRad_. k = 3)  1.09e-05 
*** 

   0.327 1.03e-05 
*** 

 0.000102 
*** 

6.21% 280.58 

Y~ 1 + s(Speed) + s(Visib. k = 3) + s(Sen_WRad_. k = 3)  6.42e-07 
*** 

  0.123  1.33e-06 
*** 

  5.52% 280.81 

Y~ 1 + s(Speed) + s(Visib. k = 3) + s(Cos_WRad_. k = 3)  5.28e-07 
*** 

   0.48 2.40e-06 
*** 

  5.45% 281.03 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed) + s(Douglas. k = 3)  4.94e-05 
*** 

6.17e-14 
*** 

0.12     0.00316 
** 

13.20% 281.16 

Y~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Speed) + s(Visib. k = 3)  5.07e-05 
*** 

7.14e-14 
*** 

   0.329  0.0102  
* 

13.20% 281.29 

Y~ 1 + s(Speed) + s(Sen_WRad_. k = 3)  2.9e-06 
*** 

  0.33     4.47% 281.73 

Y~ 1 + s(Speed) + s(Cos_WRad_. k = 3)  5.28e-07 
*** 

   0.887    4.43% 281.84 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + 
(Beaufort. k = 3) 

0.000401 
*** 

3.40e-05 
*** 

1.84e-12 
*** 

0.032423 
* 

    0.0104 
 * 13.60% 281.92 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3) + 
s(Douglas. k = 3) 

 5.41e-05 
*** 

9.33e-14 
*** 

0.122   0.337  0.00387 
** 13.30% 282.99 
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Appendix VI. Continued. 

Model 
Covariate 

Dev. Expl. AIC width 
field 

Speed Douglas Beaufort 
Wind 

Easting 
Wind 

Northing 
Visibility 

Swell 
height 

Ship 

Y ~ 1 + as.factor(Ship) + s(Douglas. k = 3)   <2e-16 
*** 

     2.30e-05 
*** 

8.80% 286.84 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) + s(Douglas. k = 3) 
4.53e-05 

*** 
 < 2e-16 

*** 
     0.000242 

*** 
9.44% 286.87 

Y ~ 1 + s(Width_Field. k = 3) + s(Douglas. k = 3) 
7.04e-07 

*** 
 < 2e-16 

*** 
      8.72% 287.10 

Y ~ 1 + s(Douglas. k = 3)   <2e-16 
*** 

      7.780% 287.98 

Y~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Beaufort. k = 3)   <2e-16 
*** 

0.0579 .     7.18e-06 
*** 

8.95% 288.38 

Y~ 1 + s(Width_Field. k = 3) + s(Douglas. k = 3) + s(Beaufort. k = 3) 
1.53e-07 

*** 
 < 2e-16 

*** 
0.0719      8.85% 288.69 

Y~ 1 + s(Width_Field. k = 3) + s(Douglas. k = 3) + s(Visib. k = 3) 
9.66e-08 

*** 
 < 2e-16 

*** 
   0.0919   8.83% 288.74 

Y~ 1 + as.factor(Ship) + s(Douglas. k = 3) + s(Visib. k = 3)   <2e-16 
*** 

   0.684  2.30e-05 
*** 

8.81% 288.82 

Y ~ 1 + s(Sen_WRad_. k = 3)     0.209     0.079% 289.58 

Y ~ 1 + s(Cos_WRad_. k = 3)      0.206    0.079% 289.58 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Visib. k = 3) 
< 2e-16 

*** 
7.53e-06 

*** 
    1.37e-09 

*** 
  9.81% 289.75 

Y ~ 1 + s(Douglas. k = 3) + s(Beaufort. k = 3)   <2e-16 
*** 

0.46      7.81% 289.91 

Y~ 1 + s(Beaufort. k = 3) + s(Douglas. k = 3)   <2e-16 
*** 

0.46      7.81% 289.91 

Y~ 1 + s(Douglas. k = 3) + s(Visib. k = 3)   <2e-16 
*** 

   0.697   7.79% 289.96 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Beaufort. k = 3) + s(Visib. k = 3) 
3.84e-10 

*** 
1.93e-07 

*** 
 0.00393 

** 
  1.45e-06 

*** 
  9.94% 290.93 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) + s(Speed) + s(Visib. k = 3) 
2.48e-15 

*** 
1.60e-06 

*** 
    7.00e-09 

*** 
 0.13 

9.82% 291.51 

Y~ 1 + s(Width_Field. k = 3) + s(Speed) + s(Beaufort. k = 3) 
1.69e-10 

*** 
1.87e-05 

*** 
 3.13e-06 

*** 
     8.76% 291.63 

Y~ 1 + s(Beaufort. k = 3) + s(Visib. k = 3) + s(Douglas. k = 3)   <2e-16 
*** 

0.462   0.702   7.81% 291.89 
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Appendix VI. Continued. 

Model 

Covariate 

Dev. Expl. AIC width 
field 

Speed Douglas Beaufort 
Wind 

Easting 
Wind 

Northing 
Visibility 

Swell 
height 

Ship 

Y ~ 1 + s(Width_Field. k = 3) + s(Speed) 6.30e-15 
*** 

2.49e-07 
*** 

       8.34% 292.04 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) + s(Speed) + s(Douglas. k = 3) + 
s(Visib. k = 3) 

9.67e-05 
*** 

5.23e-05 
*** 

7.24e-11 
*** 

2.22e-05 
*** 

  0.0195  
* 

 0.0748 8.83% 293.29 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) + s(Speed) + s(Beaufort. k = 3) 
2.10e-09 

*** 
7.19e-05 

*** 
      0.106 

8.83% 293.29 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) + s(Speed) 
3.68e-12 

*** 
8.37e-05 

*** 
      0.0309 

* 
8.38% 293.51 

Y~ 1 + s(Beaufort. k = 3) + s(Speed)  8.55e-06 
*** 

 4.88e-14 
*** 

     7.33% 294.08 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed)  6.34e-05 
*** 

 1.63e-11 
*** 

    0.0153 
* 

7.55% 295.23 

Y~ 1 + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3)  6.79e-06 
*** 

 1.45e-12 
*** 

  0.0188 
* 

  7.57% 295.35 

Y ~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Speed) + s(Visib. k = 3)  5.00e-06 
*** 

 2.61e-10 
*** 

  0.0283 
* 

 0.0203 
* 

7.77% 296.58 

Y~ 1 + as.factor(Ship) + s(Width_Field. k = 3) 
<2e-16 

*** 
       7.36e-06 

*** 
5.44% 297.2 

Y ~ 1 + s(Width_Field. k = 3) + s(Visib. k = 3) 
< 2e-16 

*** 
     1.7e-07 

*** 
  5.27% 297.71 

Y~ 1 + s(Swell height. k = 3)        0.593  0.05% 297.95 

Y~ 1 + s(Width_Field. k = 3) + s(Beaufort. k = 3) 
1.36e-12 

*** 
  6.60e-06 

*** 
     5.17% 298.02 

Y ~ 1 + s(Width_Field. k = 3) 
<2e-16 

*** 
        4.24% 298.89 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3)    7.92e-11 
*** 

    3.57e-06 
*** 

4.62% 299.71 

Y~ 1 + as.factor(Ship) + s(Speed)  2.19e-05 
*** 

      4.73e-05 
*** 

5.41% 299.81 

Y~ 1 + as.factor(Ship) + s(Speed) + s(Visib. k = 3)  2.86e-05 
*** 

    0.000398 
*** 

 0.000118 
*** 

5.93% 300.23 

Y ~ 1 + s(Speed)  2.81e-06 
*** 

       4.57% 300.66 

Y~ 1 + s(Speed) + s(Visib. k = 3)  1.37e-06 
*** 

    6.34e-05 
*** 

  5.21% 300.69 
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Appendix VI. Continued. 

Model 
Covariate 

Dev. Expl. AIC width 
field 

Speed Douglas Beaufort 
Wind 

Easting 
Wind 

Northing 
Visibility 

Swell 
height 

Ship 

Y~ 1 + s(Beaufort. k = 3) + s(Visib. k = 3) 

   

1.55e-14 
*** 

  0.0713 
. 

  3.43% 303.4 

Y ~ 1 + as.factor(Ship) 

   

     1.83e-09 
*** 

2.59% 303.99 

Y ~ 1 + s(Visib. k = 3) 

   

   0.00132 
** 

  0.4220% 310.65 

 

 

Y~ 1 + as.factor(Ship) + s(Beaufort. k = 3) + s(Visib. k = 3)    5.75e-10 
*** 

  0.0905 
 . 

 3.95e-06 
*** 

4.74% 301.35 

Y ~ 1 + s(Beaufort. k = 3)    1.41e-15 
*** 

     3.29% 301.82 
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Appendix VII. Models for the study of the environmental covariate with their values of Deviation Explained (Dev. Expl.) and AIC. Variables abbreviations: sea 

surface temperature (SST), chlorophyll concentration (CHL), euphotic depth (ZEU), photosynthetically active radiation (PAR), depth (DEP), seabed slope 

(DEP_SL), seabed aspect (DEP-AS), and their standard deviations (SST-STD, CHL-STD, ZEU-STD, PAR-STD, DEP-STD, DEP_SL-STD, DEP-AS-STD). 

Model ID Model 
Dev. 
Expl. 

AIC 

MOD_001 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) 

26.50% 259.39 

MOD_002 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) 26.00% 259.60 

MOD_003 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 26.00% 259.90 

MOD_004 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) 26.00% 260.16 

MOD_005 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 26.00% 260.50 

MOD_006 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) 25.90% 260.52 

MOD_007 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) 25.90% 260.54 

MOD_008 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) 

25.90% 260.55 

MOD_009 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Depth, k = 4) 

25.90% 260.60 

MOD_010 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Year, k = 4) 25.90% 260.70 

MOD_011 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) 25.90% 260.74 

MOD_012 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Depth, k = 4) 25.80% 260.77 

MOD_013 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) 25.80% 260.78 

MOD_014 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) 25.70% 260.83 

MOD_015 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) 25.70% 261.01 

MOD_016 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(Depth, k = 4) 25.70% 261.30 

MOD_017 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(DEP, k = 4) 

25.70% 261.32 

MOD_018 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(DEP, k = 4) 25.70% 261.34 

MOD_019 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(PAR_STD, k = 4) 

25.70% 261.36 

MOD_020 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(PAR_STD, k = 
4) 

25.60% 261.47 

MOD_021 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Year, k = 4) 25.60% 261.47 

MOD_022 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) 25.60% 261.48 
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Model ID Model 
Dev. 
Expl. 

AIC 

MOD_023 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Year, k = 4) + 
s(Depth, k = 4) 

25.60% 261.60 

MOD_024 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(Depth, k = 4) 

25.60% 261.61 

MOD_025 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) 

25.60% 261.64 

MOD_026 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(DEP, k = 4) 25.60% 261.66 

MOD_027 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) 

25.50% 261.70 

MOD_028 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(Depth, k = 4) 25.50% 261.70 

MOD_029 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) 25.50% 261.71 

MOD_030 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Year, k = 4) 25.50% 261.75 

MOD_031 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(Depth, k = 4) 25.50% 261.75 

MOD_032 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(DEP_AS_Sin, k = 3) 25.50% 261.79 

MOD_033 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Depth, k = 4) 

25.50% 261.79 

MOD_034 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) 25.30% 261.85 

MOD_035 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR_STD, k = 4) 25.30% 261.88 

MOD_036 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Depth, k = 4) 

25.30% 261.89 

MOD_037 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 25.30% 261.90 

MOD_038 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Depth, k = 4) 25.30% 261.92 

MOD_039 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(DEP_AS_Cos, k = 
3) 

25.30% 262.01 

MOD_040 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(Year, k = 4) 25.30% 262.02 

MOD_041 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(DEP, k = 4) 25.20% 262.02 

MOD_042 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Depth, k = 4) 25.20% 262.03 

MOD_043 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(PAR_STD, k = 4) 25.20% 262.13 

MOD_044 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Depth, k = 4) + s(DEP_AS_Cos, k = 3) 

25.20% 262.20 

MOD_045 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(DEP_AS_Sin, k = 3) 

25.20% 262.27 

MOD_046 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(DEP_AS_Sin, k = 3) 

25.20% 262.29 
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MOD_047 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + 
s(Year, k = 4) 

25.10% 262.31 

MOD_048 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(Depth, k = 4) + 
s(Month, k = 4) 

25.10% 262.31 

MOD_049 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(DEP, k = 4) 

25.10% 262.45 

MOD_050 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(DEP, k = 4) 

25.10% 262.48 

MOD_051 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + 
s(PAR_STD, k = 4) 

25.10% 262.48 

MOD_052 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(PAR_STD, k = 4) 

25.10% 262.48 

MOD_053 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(PAR_STD, k = 4) 

25.10% 262.50 

MOD_054 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(DEP, k = 4) 

25.00% 262.50 

MOD_055 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(DEP, k = 4) 25.00% 262.51 

MOD_056 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(PAR_STD, k = 4) 

25.00% 262.54 

MOD_057 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Year, k = 4) + 
s(DEP_AS_Sin, k = 3) 

25.00% 262.55 

MOD_058 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(Depth, k = 4) 25.00% 262.56 

MOD_059 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 3) 25.00% 262.58 

MOD_060 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Depth, k = 4) + s(PAR_STD, k = 4) 

25.00% 262.59 

MOD_061 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Year, k = 4) + 
s(DEP, k = 4) 

25.00% 262.61 

MOD_062 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Year, k = 4) + s(Depth, k = 4) 25.00% 262.61 

MOD_063 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Year, k = 4) + 
s(PAR_STD, k = 4) 

25.00% 262.62 

MOD_064 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(ZEU_STD, k = 4) 24.90% 262.63 

MOD_065 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(Year, k = 4) 24.90% 262.65 

MOD_066 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(PAR_STD, k = 4) 24.90% 262.65 

MOD_067 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Depth, k = 4) + s(DEP_AS_Cos, k 
= 3) 

24.90% 262.66 

MOD_068 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_AS_Sin, 
k = 3) 

24.80% 262.67 
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MOD_069 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(DEP, k = 4) 24.80% 262.71 

MOD_070 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP, k = 4) 24.80% 262.73 

MOD_071 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(PAR_STD, k 
= 4) 

24.80% 262.79 

MOD_072 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) + s(Depth, k = 4) 

24.80% 262.79 

MOD_073 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) 

24.80% 262.82 

MOD_074 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) + s(Depth, k = 4) 

24.80% 262.84 

MOD_075 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(DEP, k = 4) 24.70% 262.84 

MOD_076 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(DEP_AS_Sin, k = 
3) 

24.70% 262.90 

MOD_077 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) 24.70% 262.95 

MOD_078 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(PAR_STD, k = 4) 24.70% 262.98 

MOD_079 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) 24.70% 263.00 

MOD_080 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(Depth, k = 4) + 
s(PAR, k = 4) 

24.70% 263.03 

MOD_081 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR_STD, k = 4) 24.60% 263.03 

MOD_082 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(ZEU_STD, k = 4) 24.60% 263.11 

MOD_083 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Depth, k = 4) 

24.60% 263.14 

MOD_084 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Depth, k = 4) + s(ZEU_STD, k = 4) 24.50% 263.15 

MOD_085 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(Year, k = 4) 24.50% 263.18 

MOD_086 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(DEP, k = 4) 24.50% 263.22 

MOD_087 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST,k = 4) 24.50% 263.31 

MOD_088 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(SST, k = 4) + s(ZEU, k = 4) 24.50% 263.31 

MOD_089 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(PAR_STD, k = 4) 24.50% 263.33 

MOD_090 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(Depth, k = 4) + s(DEP_AS_Sin, k = 3) 

24.50% 263.34 

MOD_091 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) + s(Depth, k = 4) + s(DEP_AS_Cos, k = 3) 

24.40% 263.34 

MOD_092 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(PAR, k = 4) 24.40% 263.35 

MOD_093 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(Depth, k = 4) 24.40% 263.42 
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MOD_094 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Year, k = 4) + 
s(Depth, k = 4) + s(PAR_STD, k = 4) 

24.40% 263.44 

MOD_095 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Year, k = 4) + 
s(Depth, k = 4) + s(DEP_AS_Sin, k = 3) 

24.40% 263.45 

MOD_096 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Year, k = 4) + s(DEP, k = 4) 24.40% 263.45 

MOD_097 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) 24.40% 263.47 

MOD_098 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Month, k = 4) 24.40% 263.47 

MOD_099 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) + s(DEP_AS_Sin, k = 3) 

24.40% 263.49 

MOD_100 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + 
s(Year, k = 4) 

24.30% 263.53 

MOD_101 Y ~ 1 + as.factor(Year) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 24.30% 263.57 

MOD_102 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) + s(DEP, k = 4) 

24.30% 263.58 

MOD_103 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(Depth, k = 4) + s(PAR_STD, k = 4) 

24.30% 263.60 

MOD_104 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Depth, k = 4) + s(DEP_AS_Sin, k = 3) 

24.30% 263.61 

MOD_105 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(Depth, k = 4) + 
s(DEP_AS_Sin, k = 3) 

24.30% 263.61 

MOD_106 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) 24.30% 263.61 

MOD_107 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) + s(PAR_STD, k = 4) 

24.30% 263.63 

MOD_108 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) + s(PAR_STD, k = 4) 

24.30% 263.65 

MOD_109 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) + s(DEP, k = 4) 

24.20% 263.65 

MOD_110 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(PAR_STD, k = 4) 

24.20% 263.66 

MOD_111 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) 24.20% 263.66 

MOD_112 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) + s(CHL, k = 4) 24.20% 263.66 

MOD_113 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) + s(Depth, k = 4) + 
s(PAR_STD, k = 4) 

24.20% 263.67 

MOD_114 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(DEP, k = 4) 

24.20% 263.69 

MOD_115 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Year, k = 4) + s(PAR_STD, k = 4) 24.20% 263.74 

MOD_116 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 24.20% 263.74 
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MOD_117 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Month, k = 4) 24.20% 263.74 

MOD_118 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Depth, k = 4) 
+ s(DEP_AS_Sin, k = 3) 

24.10% 263.75 

MOD_119 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(ZEU_STD, k = 4) + 
s(Month, k = 4) 

24.10% 263.75 

MOD_120 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Depth, k = 4) + s(PAR_STD, k = 4) 

24.10% 263.78 

MOD_121 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Depth, k = 4) 
+ s(PAR_STD, k = 4) 

24.00% 263.81 

MOD_122 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(Depth, k = 4) 24.00% 263.82 

MOD_123 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Depth, k = 4) + s(PAR_STD, k = 4) 

24.00% 263.83 

MOD_124 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(DEP, k = 4) 24.00% 263.86 

MOD_125 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(Month, k = 4) 23.80% 263.96 

MOD_126 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + 
s(PAR_STD, k = 4) 

23.80% 263.98 

MOD_127 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Depth, k = 4) + s(PAR_STD, k = 4) 23.80% 263.98 

MOD_128 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Depth, k = 4) 23.70% 263.99 

MOD_129 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Depth, k = 4) 23.70% 264.00 

MOD_130 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(PAR, k = 4) 23.70% 264.03 

MOD_131 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) 

23.70% 264.05 

MOD_132 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(PAR, k = 4) 23.60% 264.23 

MOD_133 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(DEP, k = 4) + 
s(Year, k = 4) 

23.60% 264.34 

MOD_134 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(DEP, k = 4) 23.50% 264.43 

MOD_135 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(DEP, k = 4) + 
s(PAR_STD, k = 4) 

23.50% 264.46 

MOD_136 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(ZEU_STD, k = 4) + 
s(Month, k = 4) + s(PAR, k = 4) 

23.50% 264.48 

MOD_137 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(PAR_STD, k = 4) 23.50% 264.57 

MOD_138 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Year, k = 4) 23.50% 264.57 

MOD_139 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Year, k = 4) + s(PAR, k = 4) 

23.40% 264.58 

MOD_140 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) 23.40% 264.58 
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MOD_141 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) 23.40% 264.59 

MOD_142 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP, k = 4) 23.30% 264.63 

MOD_143 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) + s(Depth, k = 4) + s(DEP_AS_Sin, k = 3) 

23.30% 264.63 

MOD_144 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(ZEU_STD, k 
= 4) 

23.30% 264.63 

MOD_145 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) 23.30% 264.64 

MOD_146 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Year, k = 4) 23.30% 264.66 

MOD_147 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(Month, k = 3) 23.30% 264.68 

MOD_148 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Sin, k = 3) 23.30% 264.69 

MOD_149 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) 

23.30% 264.73 

MOD_150 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) + s(ZEU_STD, k = 4) + 
s(Year, k = 4) + s(Depth, k = 4) + s(PAR_STD, k = 4) 

23.30% 264.75 

MOD_151 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(PAR_STD, k = 4) 23.10% 264.75 

MOD_152 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) + s(Depth, k = 4) + s(PAR_STD, k = 4) 

23.10% 264.76 

MOD_153 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(ZEU_STD, k = 4) + 
s(PAR, k = 4) 

23.10% 264.78 

MOD_154 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 23.10% 264.82 

MOD_155 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) + s(CHL, k = 4) + s(DEP_AS_Cos, k = 3) 23.10% 264.82 

MOD_156 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(PAR, k = 
4) 

23.10% 264.85 

MOD_157 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Month, k = 4) + s(DEP_AS_Cos, k = 3) 23.10% 264.85 

MOD_158 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) + s(CHL, k = 4) + s(Month, k = 4) + s(DEP_AS_Cos, k = 3) 23.10% 264.85 

MOD_159 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(DEP_AS_Sin, k = 3) 23.10% 264.88 

MOD_160 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(PAR_STD, k = 4) 23.10% 264.92 

MOD_161 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(ZEU_STD, k = 4) + 
s(PAR_STD, k = 4) 

23.10% 264.95 

MOD_162 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) 

23.10% 264.98 

MOD_163 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(ZEU_STD, k = 4) 23.10% 265.01 

MOD_164 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(DEP, k = 4) 23.00% 265.01 

MOD_165 Y ~ 1 + as.factor(Year) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) 23.00% 265.04 
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Model ID Model 
Dev. 
Expl. 

AIC 

MOD_166 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(Year, k = 4) 23.00% 265.18 

MOD_167 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR, k = 4) 23.00% 265.19 

MOD_168 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(Year, k = 3) 23.00% 265.29 

MOD_169 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(PAR_STD, k = 4) 23.00% 265.29 

MOD_170 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Month, k = 4) + s(ZEU_STD, k = 4) 22.90% 265.33 

MOD_171 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(DEP_AS_Sin, 
k = 3) 

22.90% 265.36 

MOD_172 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(DEP_AS_Sin, k = 3) 22.90% 265.40 

MOD_173 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(SST, k = 4) + s(ZEU_STD, k = 4) 22.90% 265.42 

MOD_174 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Year, k = 4) + s(PAR, k = 4) 

22.90% 265.44 

MOD_175 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + 
s(DEP_AS_Sin, k = 3) 

22.90% 265.45 

MOD_176 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(DEP, k = 
4) 

22.80% 265.45 

MOD_177 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(PAR_STD, k = 4) 22.80% 265.47 

MOD_178 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR_STD, k 
= 4) 

22.80% 265.50 

MOD_179 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(ZEU_STD, k = 4) 22.80% 265.55 

MOD_180 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(ZEU_STD, k = 4) 

22.80% 265.57 

MOD_181 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(PAR_STD, 
k = 4) 

22.80% 265.65 

MOD_182 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) + s(PAR, k = 4) 

22.80% 265.65 

MOD_183 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(ZEU_STD, k = 4) + 
s(Month, k = 4) + s(PAR_STD, k = 4) 

22.70% 265.72 

MOD_184 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(PAR,  k = 4) 22.70% 265.91 

MOD_185 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + 
s(PAR, k = 4) 

22.70% 265.92 

MOD_186 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(Month, k = 4) + 
s(PAR_STD, k = 4) 

22.70% 265.95 

MOD_187 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(Year, k = 4) 

22.60% 266.02 

MOD_188 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(Depth, k = 4) 22.60% 266.03 

MOD_189 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 22.60% 266.05 
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Dev. 
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AIC 

MOD_190 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(PAR, k = 4) 

22.60% 266.10 

MOD_191 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) + s(CHL, k = 4) + s(Month, k = 4) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) 22.60% 266.15 

MOD_192 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(ZEU_STD, k = 4) + s(Year, k = 4) 

22.60% 266.23 

MOD_193 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(DEP_AS_Sin, k = 3) 

22.50% 266.29 

MOD_194 Y ~ 1 + as.factor(Year) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) 22.50% 266.35 

MOD_195 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(PAR, k = 
4) + s(DEP, k = 4) 

22.50% 266.43 

MOD_196 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(PAR_STD, k = 4) 

22.50% 266.46 

MOD_197 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 3) + s(CHL, k = 4) 22.50% 266.48 

MOD_198 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) + s(DEP_AS_Sin, k = 3) 

22.50% 266.48 

MOD_199 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(Depth, k = 4) + s(PAR, k = 4) 

22.40% 266.49 

MOD_200 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) + s(DEP, k = 4) 

22.40% 266.50 

MOD_201 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(PAR, k = 
4) + s(DEP_AS_Sin, k = 3) 

22.30% 266.53 

MOD_202 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Year, k = 4) + s(Depth, k = 4) + s(Month, k = 4) + s(PAR, k 
= 4) 

22.30% 266.64 

MOD_203 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(Month, k = 3) 22.30% 266.66 

MOD_204 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) + s(PAR_STD, k = 4) 

22.30% 266.71 

MOD_205 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(PAR, k = 
4) + s(PAR_STD, k = 4) 

22.30% 266.74 

MOD_206 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP, k = 4) 22.20% 266.77 

MOD_207 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(DEP_AS_Sin, k 
= 3) 

22.20% 266.82 

MOD_208 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(PAR, k = 4) 22.20% 266.91 

MOD_209 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(ZEU_STD, k = 4) + s(DEP_AS_Sin, k = 3) 

22.20% 267.04 

MOD_210 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) 22.20% 267.05 

MOD_211 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(PAR, k = 4) 22.20% 267.10 

MOD_212 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 21.80% 267.12 
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+ s(PAR, k = 4) 

MOD_213 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + 
s(PAR, k = 4) 

21.80% 267.20 

MOD_214 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + 
s(DEP_AS_Sin, k = 3) 

21.70% 267.30 

MOD_215 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) + s(PAR, k = 4) + s(DEP, k = 4) 

21.60% 267.31 

MOD_216 Y9.4 ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(ZEU_STD, k = 4) 21.60% 267.39 

MOD_217 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) + s(PAR, k = 4) + s(DEP_AS_Sin, k = 3) 

21.60% 267.40 

MOD_218 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 
4) + s(DEP_AS_Sin, k = 3) 

21.60% 267.43 

MOD_219 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(ZEU_STD, k = 4) + s(PAR_STD, k = 4) 

21.50% 267.51 

MOD_220 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(PAR_STD, k = 4) 21.50% 267.55 

MOD_221 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) 
+ s(Depth, k = 4) + s(PAR, k = 4) 

21.50% 267.58 

MOD_222 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) 21.20% 267.60 

MOD_223 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(ZEU_STD, k = 4) + s(Year, k = 
4) + s(PAR, k = 4) + s(PAR_STD, k = 4) 

21.20% 267.63 

MOD_224 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(ZEU_STD, k = 4) + s(Year, k = 4) + s(DEP_AS_Sin, k = 3) 

21.20% 267.81 

MOD_225 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(Year, k = 4) + s(DEP_AS_Sin, k = 3) 

21.20% 267.82 

MOD_226 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(Year, k = 4) + s(PAR_STD, k = 4) 

20.90% 267.94 

MOD_227 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(DEP, k = 4) + 
s(PAR, k = 4) 

20.90% 268.11 

MOD_228 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Sin, k = 3) + s(Month, k = 4) + s(DEP, k = 4) + 
s(DEP_AS_Cos, k = 3) 

20.80% 268.21 

MOD_229 
Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) + s(Depth, k = 4) + s(PAR, k = 4) + 
s(ZEU_STD, k = 4) + s(Year, k = 4) + s(PAR_STD, k = 4) 

20.50% 268.23 

MOD_230 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(SST, k = 4) + s(Month, k = 4) 20.50% 268.32 

MOD_231 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(DEP_AS_Cos, k = 3) 20.40% 268.88 

MOD_232 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(SST, k = 4) + s(ZEU_STD, k = 4) 20.40% 268.95 

MOD_233 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(Depth, k = 4) 20.40% 269.04 

MOD_234 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 3) + s(SST, k = 4) 20.20% 269.17 
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Model ID Model 
Dev. 
Expl. 

AIC 

MOD_235 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(DEP, k = 3) 20.20% 269.26 

MOD_236 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(Month, k = 4) 20.10% 269.40 

MOD_237 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) 19.90% 269.97 

MOD_238 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(DEP_AS_Sin, k = 3) 19.50% 270.23 

MOD_239 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(Year, k = 3) 19.40% 270.70 

MOD_240 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 3) + s(ZEU_STD, k = 4) 19.20% 270.91 

MOD_241 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(SST, k = 4) + s(ZEU, k = 4) 19.20% 271.03 

MOD_242 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(DEP_SL, k = 4) 19.20% 271.10 

MOD_243 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(SST, k = 4) + s(Month, k = 4) 19.10% 271.10 

MOD_244 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) 19.10% 271.31 

MOD_245 Y ~ 1 + as.factor(Month) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) 19.00% 271.63 

MOD_246 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) 19.00% 271.94 

MOD_247 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU, k = 4) + s(ZEU_STD, k = 4) 19.00% 271.96 

MOD_248 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(SST, k = 4) 19.00% 272.04 

MOD_249 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) + s(ZEU_STD, k = 4) 18.80% 272.29 

MOD_250 Y ~ 1 + as.factor(Year) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) 18.70% 272.33 

MOD_251 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(Month, k = 3) 18.70% 272.42 

MOD_252 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(SST, k = 4) + s(ZEU_STD, k = 4) 18.70% 272.51 

MOD_253 Y ~ 1 + as.factor(Year) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) 18.50% 272.59 

MOD_254 Y ~ 1 + as.factor(Month) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 18.40% 272.73 

MOD_255 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 18.40% 272.88 

MOD_256 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(CHL, k = 4) + s(DEP_AS_Cos, k = 3) 18.30% 272.88 

MOD_257 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 3) + s(PAR, k = 4) 18.20% 272.96 

MOD_258 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 3) + s(PAR_STD, k = 4) 18.20% 273.02 

MOD_259 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 3) + s(ZEU, k = 4) 18.20% 273.05 

MOD_260 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) 18.20% 273.25 

MOD_261 Y ~ 1 + as.factor(Month) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) + s(SST, k = 4) 18.20% 273.60 

MOD_262 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU, k = 4) + s(Month, k = 4) 18.20% 273.78 
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Model ID Model 
Dev. 
Expl. 

AIC 

MOD_263 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(SST, k = 4) + s(Month, k = 4) 18.00% 273.79 

MOD_264 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(SST, k = 4) 17.90% 274.07 

MOD_265 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(ZEU_STD, k = 4) 17.90% 274.18 

MOD_266 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(SST, k = 4) 17.80% 274.60 

MOD_267 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) +  s(SST, k = 4) + s(DEP_AS_Cos, k = 3) 17.70% 274.72 

MOD_268 Y ~ 1 + as.factor(Month) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_SL, k = 4) 17.40% 274.99 

MOD_269 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(SST, k = 4) + s(Month, k = 4) 17.30% 275.90 

MOD_270 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(ZEU, k = 4) 17.30% 276.16 

MOD_271 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(DEP_AS_Sin, k = 3) 17.30% 276.31 

MOD_272 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(DEP_AS_Cos, k = 3) 17.00% 276.87 

MOD_273 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(PAR_STD, k = 4) 16.80% 276.98 

MOD_274 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(ZEU, k = 4) + s(ZEU_STD, k = 4) 16.70% 277.08 

MOD_275 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(ZEU, k = 4) + s(Month, k = 4) 16.60% 277.12 

MOD_276 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(Year, k = 3) 16.60% 277.19 

MOD_277 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(ZEU, k = 4) + s(DEP_AS_Cos, k = 3) 16.60% 277.26 

MOD_278 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(CHL, k = 4) 16.60% 277.78 

MOD_279 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(CHL, k = 4) 16.30% 278.06 

MOD_280 Y ~ 1 + as.factor(Year) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) 16.30% 278.27 

MOD_281 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(DEP_AS_Cos, k = 3) 16.30% 278.32 

MOD_282 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) 16.20% 278.33 

MOD_283 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(DEP_AS_Sin, k = 3) 16.20% 278.43 

MOD_284 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(Month, k = 3) 16.20% 278.51 

MOD_285 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(Month, k = 4) 16.10% 278.51 

MOD_286 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(Year, k = 3) 16.00% 278.66 

MOD_287 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU_STD, k = 4) 16.00% 278.92 

MOD_288 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(ZEU_STD, k = 4) 15.80% 278.92 

MOD_289 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(PAR_STD, k = 4) 15.80% 279.04 

MOD_290 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(Month, k = 4) 15.80% 279.11 
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Model ID Model 
Dev. 
Expl. 

AIC 

MOD_291 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(ZEU_STD, k = 4) 15.50% 279.31 

MOD_292 Y ~ 1 + as.factor(Month) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) 15.50% 279.52 

MOD_293 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(Month, k = 3) 15.40% 279.56 

MOD_294 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(DEP, k = 4) 15.30% 279.63 

MOD_295 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(CHL, k = 4) + s(PAR, k = 4) 15.30% 279.74 

MOD_296 Y ~ 1 + as.factor(Month) + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) 15.20% 280.43 

MOD_297 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(PAR, k = 4) 15.00% 280.72 

MOD_298 Y ~ 1 + s(Speed) + s(Douglas, k = 3) + s(Width_Field, k = 3) + s(DEP, k = 4) 15.00% 280.92 

MOD_299 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(ZEU, k = 4) 14.80% 277.93 

MOD_300 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(Month, k = 4) 14.60% 278.54 

MOD_301 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) + s(SST, k = 4) 14.30% 264.77 

MOD_302 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) + s(CHL, k = 4) 14.20% 265.16 

MOD_303 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) + s(ZEU, k = 4) 14.10% 269.56 

MOD_304 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) + s(Month, k = 4) 14.00% 268.39 

MOD_305 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(SST, k = 4) 13.80% 261.85 

MOD_306 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(ZEU, k = 4) 13.70% 264.58 

MOD_307 Y ~ 1 + s(Width_Field, k = 3) + s(Speed) + s(Douglas, k = 3) + s(DEP_AS_Cos, k = 3) + s(ZEU_STD, k = 4) + s(DEP_SL, k = 4) + s(CHL, k = 4) + s(Month, k = 4) 13.40% 265.12 
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Appendix VIII. P-values of the models for the study of the environmental covariate. P-values: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1. Covariates 

abbreviations: sea surface temperature (SST), chlorophyll concentration (CHL), euphotic depth (ZEU), photosynthetically active radiation (PAR), depth (DEP), 

seabed slope (DEP_SL), seabed aspect (DEP-AS), and their standard deviations (SST-STD, CHL-STD, ZEU-STD, PAR-STD, DEP-STD, DEP_SL-STD, DEP-AS-STD). 

Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_001 
0.00441 
** 

2.41e-07 
*** 

2.25e-12 
*** 

1.36e-12 
*** 

< 2e-16 
*** 

9.61e-10 
*** 

1.33e-05 
*** 

    8.87e-13 
*** 

6.22e-13 
*** 

  8.58e-07 
*** 

MOD_002 
0.000580 
*** 

0.000309 
*** 

4.96e-11 
*** 

2.69e-11 
*** 

< 2e-16 
*** 

1.02e-11 
*** 

     2.44e-10 
*** 

9.34e-12 
*** 

  4.45e-05 
*** 

MOD_003 
0.000406 
*** 

6.05e-05 
*** 

1.18e-11 
*** 

1.46e-10 
*** 

3.60e-16 
*** 

6.87e-09 
*** 

     7.77e-11 
*** 

7.18e-12 
*** 

   

MOD_004 
0.000279 
*** 

1.09e-05 
*** 

2.32e-11 
*** 

1.58e-12 
*** 

< 2e-16 
*** 

2.87e-10 
*** 

 0.000337 
*** 

   1.82e-10 
*** 

1.82e-12 
*** 

   

MOD_005 
0.00294 
**  

1.81e-05 
*** 

1.42e-12 
*** 

2.79e-12 
*** 

< 2e-16 
*** 

1.54e-09 
*** 

2.37e-05 
*** 

   1.17e-09 
*** 

 1.70e-12 
*** 

  1.42e-06 
*** 

MOD_006 
0.00318 
**  

3.21e-06 
*** 

2.36e-11 
*** 

8.90e-11 
*** 

< 2e-16 
*** 

1.54e-12 
*** 

     9.83e-10 
*** 

1.01e-11 
*** 

0.01016 
*   

 5.72e-05 
*** 

MOD_007 
0.001785 
**  

5.99e-07 
*** 

1.29e-12 
*** 

1.65e-13 
*** 

< 2e-16 
*** 

8.58e-08 
*** 

0.000124 
*** 

4.43e-05 
*** 

   1.69e-12 
*** 

1.53e-13 
*** 

   

MOD_008 
0.00310 
**  

5.25e-07 
*** 

4.97e-12 
*** 

1.97e-12 
*** 

< 2e-16 
*** 

3.73e-05 
*** 

4.85e-07 
*** 

    6.02e-10 
*** 

4.48e-13 
*** 

 0.00456 
**  

6.91e-05 
*** 

MOD_009 
0.0124 * 9.62e-08 

*** 
1.65e-12 
*** 

4.40e-12 
*** 

< 2e-16 
*** 

4.04e-10 
*** 

6.84e-05 
*** 

    9.41e-12 
*** 

1.03e-12 
*** 

0.0466 *  1.53e-06 
*** 

MOD_010 
0.001495 
**  

0.000581 
*** 

3.90e-12 
*** 

6.14e-12 
*** 

4.34e-15 
*** 

0.005581 
**  

4.46e-06 
*** 

    5.80e-09 
*** 

6.37e-13 
*** 

 4.74e-05 
*** 

 

MOD_011 
0.000435 
*** 

2.31e-05 
*** 

2.80e-11 
*** 

1.74e-11 
*** 

< 2e-16 
*** 

2.60e-11 
*** 

    3.72e-07 
*** 

 9.96e-12 
*** 

  6.77e-05 
*** 

MOD_012 
0.00222 
**  

2.61e-05 
*** 

5.67e-12 
*** 

6.60e-10 
*** 

1.69e-14 
*** 

1.04e-09 
*** 

     2.86e-10 
*** 

8.96e-12 
*** 

0.01068 
*   

  

MOD_013 
0.000335 
*** 

5.39e-06 
*** 

6.42e-12 
*** 

3.97e-12 
*** 

3.09e-15 
*** 

2.12e-07 
*** 

    6.04e-13 
*** 

 3.62e-12 
*** 

   

MOD_014 
0.001841 
**  

0.000152 
*** 

8.13e-13 
*** 

6.04e-11 
*** 

1.95e-15 
*** 

7.63e-07 
*** 

0.000926 
*** 

    1.97e-12 
*** 

9.16e-13 
*** 

   

MOD_015 
0.000173 
*** 

5.33e-05 
*** 

6.09e-11 
*** 

1.10e-10 
*** 

9.54e-16 
*** 

6.25e-06 
*** 

     4.30e-08 
*** 

1.59e-11 
*** 

 0.009290 
**  

 

MOD_016 
0.001470 
**  

0.000188 
*** 

1.25e-11 
*** 

9.54e-12 
*** 

< 2e-16 
*** 

7.34e-11 
*** 

 0.001162 
**  

   6.39e-10 
*** 

2.93e-12 
*** 

0.024655 
* 

  

MOD_017 
0.00649 
**  

1.87e-07 
*** 

1.96e-12 
*** 

2.82e-12 
*** 

< 2e-16 
*** 

7.09e-10 
*** 

4.60e-05 
*** 

  0.372  1.31e-11 
*** 

6.48e-13 
*** 

  9.14e-07 
*** 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_018 
0.00153 
**  

6.06e-06 
*** 

2.65e-11 
*** 

7.56e-11 
*** 

< 2e-16 
*** 

2.32e-12 
*** 

   0.08658 .    2.00e-09 
*** 

7.65e-12 
*** 

  3.78e-05 
*** 

MOD_019 
0.00436 
**  

2.39e-07 
*** 

2.59e-12 
*** 

1.76e-12 
*** 

< 2e-16 
*** 

1.51e-09 
*** 

2.19e-05 
*** 

 0.76332   8.91e-13 
*** 

1.88e-12 
*** 

  9.10e-07 
*** 

MOD_020 
0.000614 
*** 

9.63e-06 
*** 

5.24e-11 
*** 

4.02e-11 
*** 

< 2e-16 
*** 

7.53e-12 
*** 

  0.308603   1.86e-10 
*** 

1.82e-11 
*** 

  2.61e-05 
*** 

MOD_021 
0.000378 
*** 

1.49e-05 
*** 

8.83e-11 
*** 

6.25e-11 
*** 

< 2e-16 
*** 

1.53e-08 
*** 

     9.59e-09 
*** 

1.31e-11 
*** 

 0.271592 0.000786 
*** 

MOD_022 
0.000206 
*** 

7.96e-07 
*** 

1.22e-11 
*** 

2.61e-13 
*** 

< 2e-16 
*** 

6.28e-08 
*** 

 0.002258 
**  

  8.38e-12 
*** 

 1.36e-12 
*** 

   

MOD_023 
0.005626 
**  

0.000409 
*** 

2.81e-12 
*** 

1.56e-11 
*** 

2.87e-11 
*** 

0.002399 
**  

1.60e-05 
*** 

    5.93e-08 
*** 

8.15e-13 
*** 

0.025772 
*   

2.16e-05 
*** 

 

MOD_024 
0.009995 
** 

2.01e-07 
*** 

3.53e-12 
*** 

4.38e-12 
*** 

1.74e-15 
*** 

1.98e-05 
*** 

1.76e-06 
*** 

    8.58e-09 
*** 

5.98e-13 
*** 

0.032831 
*   

0.002117 
**  

0.000136 
*** 

MOD_025 
0.001949 
**  

0.000192 
*** 

3.59e-12 
*** 

2.88e-12 
*** 

< 2e-16 
*** 

7.68e-05 
*** 

1.06e-06 
*** 

   1.39e-05 
*** 

 6.78e-13 
*** 

 0.002684 
**  

0.000137 
*** 

MOD_026 
0.000984 
*** 

4.19e-05 
*** 

6.29e-12 
*** 

4.17e-10 
*** 

2.81e-14 
*** 

1.79e-09 
*** 

   0.097783 
. 

 7.05e-10 
*** 

5.74e-12 
*** 

   

MOD_027 
0.001417 
**  

1.64e-06 
*** 

3.34e-12 
*** 

5.82e-13 
*** 

< 2e-16 
*** 

0.000475 
*** 

4.62e-06 
*** 

0.007343 
**  

   1.01e-09 
*** 

2.14e-13 
*** 

 0.005369 
**  

 

MOD_028 
0.001201 
**  

0.000901 
*** 

3.09e-11 
*** 

3.71e-10 
*** 

3.33e-14 
*** 

7.87e-07 
*** 

     2.57e-07 
*** 

1.40e-11 
*** 

0.005998 
**  

0.003959 
**  

 

MOD_029 
0.001156 
**  

1.45e-05 
*** 

8.25e-13 
*** 

3.21e-13 
*** 

< 2e-16 
*** 

1.31e-07 
*** 

0.000241 
*** 

8.50e-05 
*** 

  7.03e-09 
*** 

 3.05e-13 
*** 

   

MOD_030 
8.58e-05 
*** 

1.22e-06 
*** 

3.45e-11 
*** 

5.77e-12 
*** 

2.22e-16 
*** 

0.000149 
*** 

    8.12e-10 
*** 

 1.49e-12 
*** 

 0.000143 
*** 

 

MOD_031 
0.00219 
**  

1.75e-05 
*** 

1.52e-11 
*** 

8.54e-11 
*** 

< 2e-16 
*** 

4.44e-12 
*** 

    5.95e-07 
*** 

 1.37e-11 
*** 

0.01461 
*   

 7.12e-05 
*** 

MOD_032 
0.000400 
*** 

6.64e-05 
*** 

1.14e-11 
*** 

1.09e-10 
*** 

2.66e-16 
*** 

1.17e-08 
*** 

    0.793897 0.002665 
**  

4.21e-11 
*** 

   

MOD_033 
0.00804 
**  

1.68e-05 
*** 

1.13e-12 
*** 

1.27e-11 
*** 

< 2e-16 
*** 

6.33e-10 
*** 

9.83e-05 
*** 

   4.03e-09 
*** 

 3.32e-12 
*** 

0.05700 .    2.04e-06 
*** 

MOD_034 
0.002405 
**  

0.000202 
*** 

2.47e-13 
*** 

1.65e-08 
*** 

2.59e-09 
*** 

 7.07e-06 
*** 

    3.37e-11 
*** 

< 2e-16 
*** 

   

MOD_035 
0.000411 
*** 

6.12e-05 
*** 

1.20e-11 
*** 

1.92e-10 
*** 

5.42e-16 
*** 

8.10e-09 
*** 

  0.969331   8.37e-11 
*** 

5.35e-11 
*** 

   

MOD_036 
0.005025 
**  

3.64e-07 
*** 

1.04e-12 
*** 

8.41e-13 
*** 

2.60e-16 
*** 

4.78e-08 
*** 

0.000454 
*** 

0.000148 
*** 

   1.30e-11 
*** 

3.19e-13 
*** 

0.087680 
.   

  

MOD_037 0.000308 0.000659 7.43e-12 5.96e-08 1.53e-11       3.59e-09 < 2e-16    
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

*** *** *** *** *** *** *** 

MOD_038 
0.00574 
**  

8.56e-06 
*** 

6.19e-13 
*** 

2.32e-10 
*** 

1.22e-11 
*** 

2.58e-07 
*** 

0.00350 
**  

    1.63e-11 
*** 

1.56e-12 
*** 

0.03752 
*   

  

MOD_039 
0.000278 
*** 

3.21e-05 
*** 

2.41e-11 
*** 

1.27e-12 
*** 

< 2e-16 
*** 

4.57e-10 
*** 

 0.000333 
*** 

  0.864992 0.001957 
**  

4.19e-11 
*** 

   

MOD_040 
0.000189 
*** 

1.54e-05 
*** 

4.81e-11 
*** 

9.31e-12 
*** 

< 2e-16 
*** 

1.26e-07 
*** 

 0.007435 
**  

   8.41e-09 
*** 

4.42e-12 
*** 

 0.26784  

MOD_041 
0.000633 
*** 

7.38e-06 
*** 

1.49e-11 
*** 

4.83e-12 
*** 

2.23e-16 
*** 

1.07e-10 
*** 

 0.000540 
*** 

 0.174261  1.06e-09 
*** 

1.65e-12 
*** 

   

MOD_042 
0.00151 
** 

3.85e-05 
*** 

4.13e-12 
*** 

4.38e-10 
*** 

5.17e-15 
*** 

2.75e-09 
*** 

    5.10e-07 
*** 

 5.69e-12 
*** 

0.01773 
*   

  

MOD_043 
0.000285 
*** 

1.05e-05 
*** 

2.35e-11 
*** 

2.01e-12 
*** 

< 2e-16 
*** 

3.32e-10 
*** 

 0.000325 
*** 

0.738612   1.75e-10 
*** 

8.98e-12 
*** 

   

MOD_044 
0.0155 *   2.18e-05 

*** 
1.46e-12 
*** 

1.27e-11 
*** 

< 2e-16 
*** 

2.34e-10 
*** 

3.71e-05 
*** 

   0.2467 8.66e-05 
*** 

1.09e-10 
*** 

0.0389 *    8.76e-07 
*** 

MOD_045 
0.001987 
**  

2.57e-05 
*** 

1.22e-12 
*** 

2.45e-13 
*** 

< 2e-16 
*** 

6.64e-08 
*** 

9.34e-05 
*** 

3.12e-05 
*** 

  0.44744 0.000199 
*** 

1.16e-11 
*** 

   

MOD_046 
0.00339 
**  

1.31e-05 
*** 

4.83e-12 
*** 

3.57e-12 
*** 

< 2e-16 
*** 

3.12e-05 
*** 

4.35e-07 
*** 

   0.54947 0.00120 
**  

4.07e-11 
*** 

 0.00599 
**  

5.78e-05 
*** 

MOD_047 
0.00210 
** 

4.72e-06 
*** 

4.53e-11 
*** 

1.94e-10 
*** 

< 2e-16 
*** 

2.76e-09 
*** 

     7.23e-08 
*** 

1.22e-11 
*** 

0.00736 
** 

0.14546 0.00143 
** 

MOD_048 
0.00210 
**  

4.72e-06 
*** 

4.53e-11 
*** 

1.94e-10 
*** 

< 2e-16 
*** 

2.76e-09 
*** 

     7.23e-08 
*** 

1.22e-11 
*** 

0.00736 
**  

0.14546 0.00143 
**  

MOD_049 
0.00431 
**  

1.66e-05 
*** 

1.25e-12 
*** 

5.91e-12 
*** 

< 2e-16 
*** 

1.09e-09 
*** 

7.51e-05 
*** 

  0.38164 1.02e-08 
*** 

 1.96e-12 
*** 

  1.43e-06 
*** 

MOD_050 
0.00468 
**  

4.11e-07 
*** 

4.30e-12 
*** 

3.02e-12 
*** 

5.53e-16 
*** 

2.39e-05 
*** 

1.73e-06 
*** 

  0.37644  5.81e-09 
*** 

5.00e-13 
*** 

 0.00463 
**  

7.27e-05 
*** 

MOD_051 
0.00313 
** 

3.22e-06 
*** 

2.52e-11 
*** 

1.16e-10 
*** 

< 2e-16 
*** 

1.60e-12 
*** 

  0.65658   9.18e-10 
*** 

1.63e-11 
*** 

0.01802 
* 

 5.83e-05 
*** 

MOD_052 
0.00294 
**  

1.85e-05 
*** 

1.57e-12 
*** 

3.66e-12 
*** 

< 2e-16 
*** 

2.66e-09 
*** 

3.26e-05 
*** 

 0.90089  1.09e-09 
*** 

 4.48e-12 
*** 

  1.75e-06 
*** 

MOD_053 
0.001846 
**  

5.94e-07 
*** 

1.26e-12 
*** 

1.91e-13 
*** 

< 2e-16 
*** 

1.91e-07 
*** 

0.000123 
*** 

5.03e-05 
*** 

0.696288   1.73e-12 
*** 

1.04e-12 
*** 

   

MOD_054 
0.002359 
**  

5.38e-07 
*** 

1.27e-12 
*** 

3.41e-13 
*** 

2.42e-16 
*** 

8.16e-08 
*** 

0.000298 
*** 

5.95e-05 
*** 

 0.5526  1.47e-11 
*** 

1.60e-13 
*** 

   

MOD_055 
0.00110 
**  

1.80e-05 
*** 

1.56e-11 
*** 

5.49e-11 
*** 

< 2e-16 
*** 

6.46e-12 
*** 

   0.09783 . 1.75e-06 
*** 

 1.01e-11 
*** 

  5.29e-05 
*** 

MOD_056 
0.003110 
**  

5.35e-12 
*** 

5.35e-12 
*** 

1.97e-12 
*** 

< 2e-16 
*** 

7.00e-05 
*** 

8.61e-07 
*** 

 0.994848   6.18e-10 
*** 

1.60e-12 
*** 

 0.004855 
**  

0.000101 
*** 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_057 
0.001464 
**  

0.000851 
*** 

3.95e-12 
*** 

4.68e-12 
*** 

3.56e-15 
*** 

0.006224 
**  

5.39e-06 
*** 

   0.921474 0.007936 
**  

6.87e-12 
*** 

 4.81e-05 
*** 

 

MOD_058 
0.00100 
**  

1.83e-05 
*** 

7.84e-12 
*** 

9.37e-12 
*** 

< 2e-16 
*** 

1.85e-10 
*** 

 0.00152 
**  

  5.67e-07 
*** 

 3.47e-12 
*** 

0.03331 
*   

  

MOD_059 
5.51e-05 
*** 

1.36e-05 
*** 

2.95e-11 
*** 

1.37e-09 
*** 

2.28e-15 
*** 

0.000851 
*** 

      5.02e-08 
*** 

 3.42e-06 
*** 

 

MOD_060 
0.0125 *   9.64e-08 

*** 
1.77e-12 
*** 

5.32e-12 
*** 

< 2e-16 
*** 

6.38e-10 
*** 

7.60e-05 
*** 

 0.9884   9.93e-12 
*** 

2.33e-12 
*** 

0.0532 .  2.28e-06 
*** 

MOD_061 
0.00233 
** 

1.12e-05 
*** 

3.29e-12 
*** 

9.31e-12 
*** 

3.18e-13 
*** 

0.00339 
**  

1.61e-05 
*** 

  0.32912  5.09e-08 
*** 

7.08e-13 
*** 

 5.01e-05 
*** 

 

MOD_062 
0.000524 
*** 

8.16e-07 
*** 

2.10e-11 
*** 

1.83e-11 
*** 

5.26e-15 
*** 

3.05e-05 
*** 

    1.70e-07 
*** 

 1.38e-12 
*** 

0.012673 
*   

3.90e-05 
*** 

 

MOD_063 
0.001558 
**  

0.000562 
*** 

3.42e-12 
*** 

7.60e-12 
*** 

4.41e-15 
*** 

0.011928 
*   

3.34e-06 
*** 

 0.36259   6.21e-09 
*** 

5.18e-12 
*** 

 3.72e-05 
*** 

 

MOD_064 
0.000635 
*** 

0.000627 
*** 

2.32e-12 
*** 

5.57e-11 
*** 

1.72e-15 
*** 

0.134671 4.73e-05 
*** 

     3.08e-09 
*** 

 4.16e-09 
*** 

 

MOD_065 
0.000117 
*** 

2.38e-07 
*** 

4.88e-11 
*** 

1.16e-11 
*** 

< 2e-16 
*** 

2.24e-06 
*** 

    2.16e-09 
*** 

 3.34e-12 
*** 

 0.010390 
*   

0.005015 
**  

MOD_066 
0.000456 
*** 

2.44e-05 
*** 

2.90e-11 
*** 

2.88e-11 
*** 

< 2e-16 
*** 

2.18e-11 
*** 

  0.428987  1.96e-07 
*** 

 2.16e-11 
*** 

  4.88e-05 
*** 

MOD_067 
0.00227 
**  

5.66e-05 
*** 

5.81e-12 
*** 

7.54e-10 
*** 

2.17e-14 
*** 

1.61e-09 
*** 

    0.85025 0.00156 
**  

5.72e-11 
*** 

0.01112 
*   

  

MOD_068 
0.001881 
**  

6.27e-05 
*** 

8.03e-13 
*** 

5.43e-11 
*** 

2.00e-15 
*** 

8.58e-07 
*** 

0.000974 
*** 

   0.859189 0.000615 
*** 

1.16e-11 
*** 

   

MOD_069 
0.000483 
*** 

3.75e-05 
*** 

3.33e-11 
*** 

2.67e-10 
*** 

3.65e-14 
*** 

1.33e-06 
*** 

   0.077502 
.   

 3.73e-07 
*** 

1.35e-11 
*** 

 0.007258 
**  

 

MOD_070 
0.002808 
** 

0.000130 
*** 

6.83e-13 
*** 

1.11e-10 
*** 

7.77e-12 
*** 

4.70e-07 
*** 

0.002695 
**  

  0.304952  3.07e-11 
*** 

9.14e-13 
*** 

   

MOD_071 
0.001910 
** 

0.000146 
*** 

7.91e-13 
*** 

7.99e-11 
*** 

2.50e-15 
*** 

1.49e-06 
*** 

0.000773 
*** 

 0.551778   2.13e-12 
*** 

8.71e-12 
*** 

   

MOD_072 
0.006177 
** 

0.000184 
*** 

2.72e-12 
*** 

8.45e-12 
*** 

7.87e-16 
*** 

4.16e-05 
*** 

3.20e-06 
*** 

   6.46e-05 
*** 

 1.11e-12 
*** 

0.039479 
*   

0.001230 
**  

0.000228 
*** 

MOD_073 
0.000896 
*** 

0.000193 
*** 

2.53e-12 
*** 

5.38e-13 
*** 

< 2e-16 
*** 

0.001064 
**  

9.55e-06 
*** 

0.015335 
*   

  5.19e-05 
*** 

 2.27e-13 
*** 

 0.002545 
**  

 

MOD_074 
0.004838 
**  

9.86e-07 
*** 

2.61e-12 
*** 

2.62e-12 
*** 

2.62e-14 
*** 

0.000347 
*** 

1.19e-05 
*** 

0.023116 
*   

   1.39e-08 
*** 

3.41e-13 
*** 

0.049371 
*   

0.001914 
**  

 

MOD_075 
0.000717 
*** 

0.000273 
*** 

4.24e-12 
*** 

2.15e-10 
*** 

1.12e-14 
*** 

4.30e-09 
*** 

   0.11967 1.60e-06 
*** 

 3.25e-12 
*** 

   

MOD_076 0.000164 0.001081 5.76e-11 7.54e-11 5.66e-16 1.02e-05     0.592369 0.018223 5.13e-11  0.008495  
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

*** **  *** *** *** *** *   *** **  

MOD_077 
0.000494 
*** 

0.000685 
*** 

1.51e-11 
*** 

2.82e-09 
*** 

6.23e-14 
*** 

8.93e-05 
*** 

      4.91e-09 
*** 

0.002700 
**  

8.91e-07 
*** 

 

MOD_078 
0.000177 
*** 

5.34e-05 
*** 

6.14e-11 
*** 

1.45e-10 
*** 

1.55e-15 
*** 

6.65e-06 
*** 

  0.904395   4.35e-08 
*** 

8.23e-11 
*** 

 0.009230 
**  

 

MOD_079 
7.34e-05 
*** 

1.04e-05 
*** 

3.69e-11 
*** 

 < 2e-16 
*** 

4.53e-10 
*** 

     6.03e-08 
*** 

1.64e-13 
*** 

  4.86e-06 
*** 

MOD_080 
0.00105 
**  

7.79e-06 
*** 

2.92e-11 
*** 

6.27e-11 
*** 

5.77e-15 
*** 

5.09e-08 
*** 

 0.03303 
*   

   7.46e-08 
*** 

5.82e-12 
*** 

0.01486 
*   

0.1112  

MOD_081 
0.000316 
*** 

4.29e-05 
*** 

8.28e-12 
*** 

6.68e-11 
*** 

< 2e-16 
*** 

5.47e-07 
*** 

  0.84478  7.00e-07 
*** 

 2.65e-11 
*** 

   

MOD_082 
0.00346 
**  

6.17e-06 
*** 

1.46e-12 
*** 

1.03e-10 
*** 

9.59e-11 
*** 

0.04964 
*   

8.64e-05 
*** 

     4.51e-10 
*** 

0.00712 
**  

1.41e-09 
*** 

 

MOD_083 
0.003128 
**  

1.58e-05 
*** 

7.23e-13 
*** 

2.06e-12 
*** 

6.60e-16 
*** 

7.11e-08 
*** 

0.000733 
*** 

0.000215 
*** 

  1.83e-08 
*** 

 7.17e-13 
*** 

0.102623   

MOD_084 
0.00364 
**  

3.43e-05 
*** 

5.21e-13 
*** 

2.02e-10 
*** 

1.26e-13 
*** 

4.94e-07 
*** 

0.00530 
**  

   7.61e-08 
*** 

 1.34e-12 
*** 

0.05244 .     

MOD_085 
0.000128 
*** 

1.24e-05 
*** 

3.04e-11 
*** 

6.39e-12 
*** 

< 2e-16 
*** 

4.50e-07 
*** 

 0.015347 
*   

  5.61e-05 
*** 

 2.91e-12 
*** 

 0.164861  

MOD_086 
0.000460 
*** 

1.75e-05 
*** 

8.40e-12 
*** 

3.99e-12 
*** 

< 2e-16 
*** 

2.52e-10 
*** 

 0.000827 
*** 

 0.188789 1.32e-06 
*** 

 1.92e-12 
*** 

   

MOD_087 
0.000326 
*** 

2.70e-05 
*** 

1.70e-12 
*** 

1.42e-08 
*** 

< 2e-16 
*** 

6.37e-07 
*** 

      5.65e-07 
*** 

   

MOD_088 
0.000326 
*** 

0.000241 
*** 

1.70e-12 
*** 

1.42e-08 
*** 

< 2e-16 
*** 

6.37e-07 
*** 

      5.65e-07 
*** 

   

MOD_089 
0.000213 
*** 

2.03e-05 
*** 

1.30e-11 
*** 

1.55e-12 
*** 

< 2e-16 
*** 

8.14e-10 
*** 

 0.000611 
*** 

0.902619  3.22e-07 
*** 

 8.07e-12 
*** 

   

MOD_090 
0.01187 
* 

1.08e-05 
*** 

3.27e-12 
*** 

1.27e-11 
*** 

1.06e-15 
*** 

1.31e-05 
*** 

1.27e-06 
*** 

   0.38039 0.00101 
**  

5.67e-11 
*** 

0.02907 
*   

0.00303 
**  

9.21e-05 
*** 

MOD_091 
0.01187 
*   

1.08e-05 
*** 

3.27e-12 
*** 

1.27e-11 
*** 

1.09e-15 
*** 

1.31e-05 
*** 

1.27e-06 
*** 

   0.38039 0.00101 
**  

5.67e-11 
*** 

0.02907 
*   

0.00303 
**  

9.21e-05 
*** 

MOD_092 
0.000104 
*** 

0.000146 
*** 

3.15e-12 
*** 

3.16e-10 
*** 

< 2e-16 
*** 

3.66e-08 
*** 

 0.000124 
*** 

    7.32e-08 
*** 

   

MOD_093 
0.000112 
*** 

8.20e-05 
*** 

2.14e-13 
*** 

 8.31e-06 
*** 

        8.29e-12 
*** 

  

MOD_094 
0.00613 
**  

4.92e-06 
*** 

2.36e-12 
*** 

1.59e-11 
*** 

1.43e-12 
*** 

0.00491 
**  

8.58e-06 
*** 

 0.21717   6.89e-08 
*** 

4.67e-12 
*** 

0.01627 
*   

1.59e-05 
*** 

 

MOD_095 
0.00580 
**  

2.06e-05 
*** 

2.82e-12 
*** 

1.86e-11 
*** 

9.26e-13 
*** 

0.00239 
**  

1.58e-05 
*** 

   0.80094 0.00653 
**  

1.21e-11 
*** 

0.02573 
*   

2.34e-05 
*** 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_096 
0.000248 
*** 

1.04e-06 
*** 

1.96e-11 
*** 

1.31e-11 
*** 

1.12e-14 
*** 

3.26e-05 
*** 

   0.070864 
.   

5.70e-08 
*** 

 1.58e-12 
*** 

 0.000103 
*** 

 

MOD_097 
1.99e-05 
*** 

2.90e-05 
*** 

3.55e-12 
*** 

 2.81e-16 
*** 

6.09e-08 
*** 

     1.39e-08 
*** 

6.62e-14 
*** 

   

MOD_098 
6.04e-05 
*** 

7.77e-06 
*** 

4.47e-11 
*** 

4.70e-09 
*** 

< 2e-16 
*** 

1.25e-05 
*** 

      5.95e-08 
*** 

 0.000995 
*** 

0.003090 
**  

MOD_099 
0.001480 
**  

1.55e-05 
*** 

3.26e-12 
*** 

6.88e-13 
*** 

< 2e-16 
*** 

0.000434 
*** 

4.48e-06 
*** 

0.006323 
**  

  0.674038 0.002150 
**  

9.29e-12 
*** 

 0.006962 
**  

 

MOD_100 
0.001321 
**  

8.94e-06 
*** 

3.12e-11 
*** 

1.41e-10 
*** 

< 2e-16 
*** 

1.07e-08 
*** 

    0.000133 
*** 

 1.17e-11 
*** 

0.010823 
*   

0.098601 
.   

0.002145 
**  

MOD_101 
1.15e-05 
*** 

6.19e-05 
*** 

5.62e-10 
*** 

0.000133 
*** 

< 2e-16 
*** 

8.34e-05 
*** 

     8.90e-11 
*** 

9.61e-14 
*** 

   

MOD_102 
0.002978 
**  

3.35e-06 
*** 

3.10e-12 
*** 

4.80e-12 
*** 

4.78e-16 
*** 

4.85e-05 
*** 

3.35e-06 
*** 

  0.368412 6.02e-05 
*** 

 9.00e-13 
*** 

 0.002697 
**  

0.000139 
*** 

MOD_103 
0.010171 
*   

5.78e-05 
*** 

3.52e-12 
*** 

4.49e-12 
*** 

1.10e-15 
*** 

4.20e-05 
*** 

1.94e-06 
*** 

 0.76446   9.57e-09 
*** 

1.66e-12 
*** 

0.032785 
*   

0.002031 
**  

0.000278 
*** 

MOD_104 
0.005955 
**  

2.61e-05 
*** 

9.54e-13 
*** 

1.86e-12 
*** 

2.65e-15 
*** 

3.06e-08 
*** 

0.000292 
*** 

8.98e-05 
*** 

  0.332544 0.000166 
*** 

2.14e-11 
*** 

0.077763 
.   

  

MOD_105 
0.00119 
** 

2.98e-05 
*** 

3.09e-11 
*** 

3.59e-10 
*** 

3.33e-14 
*** 

1.23e-06 
*** 

    0.94972 0.01265 
* 

6.07e-11 
*** 

0.00680 
** 

0.00404 
** 

 

MOD_106 
0.000756 
*** 

3.50e-06 
*** 

1.11e-11 
*** 

 5.53e-15 
*** 

1.12e-10 
*** 

     1.84e-07 
*** 

4.33e-13 
*** 

0.013318 
*   

 7.56e-06 
*** 

MOD_107 
0.001964 
**  

0.000192 
*** 

3.73e-12 
*** 

2.93e-12 
*** 

< 2e-16 
*** 

0.000160 
*** 

1.48e-06 
*** 

 0.866476  1.46e-05 
*** 

 1.99e-12 
*** 

 0.002685 
**  

0.000231 
*** 

MOD_108 
0.00147 
**  

1.72e-06 
*** 

3.09e-12 
*** 

6.31e-13 
*** 

< 2e-16 
*** 

0.00113 
**  

4.60e-06 
*** 

0.00970 
**  

0.54494   1.09e-09 
*** 

1.57e-12 
*** 

 0.00483 
**  

 

MOD_109 
0.001997 
**  

1.48e-06 
*** 

3.15e-12 
*** 

8.91e-13 
*** 

8.04e-14 
*** 

0.000358 
*** 

1.22e-05 
*** 

0.009330 
**  

 0.487875  7.80e-09 
*** 

2.40e-13 
*** 

 0.005038 
**  

 

MOD_110 
0.001209 
**  

1.40e-05 
*** 

7.91e-13 
*** 

3.70e-13 
*** 

< 2e-16 
*** 

3.11e-07 
*** 

0.000213 
*** 

0.000102 
*** 

0.581187  8.74e-09 
*** 

 1.57e-12 
*** 

   

MOD_111 
0.000513 
*** 

8.21e-06 
*** 

1.99e-11 
*** 

1.48e-13 
*** 

2.44e-15 
*** 

< 2e-16 
*** 

          

MOD_112 
0.000513 
*** 

8.21e-06 
*** 

1.99e-11 
*** 

1.48e-13 
*** 

2.44e-15 
*** 

< 2e-16 
*** 

          

MOD_113 
0.00122 
**  

2.25e-05 
*** 

3.14e-11 
*** 

4.38e-10 
*** 

6.05e-14 
*** 

8.77e-07 
*** 

  0.65028   2.91e-07 
*** 

5.30e-11 
*** 

0.00597 
**  

0.00421 
**  

 

MOD_114 
0.001532 
**  

1.47e-05 
*** 

8.14e-13 
*** 

6.97e-13 
*** 

2.29e-16 
*** 

1.14e-07 
*** 

0.000536 
*** 

0.000105 
*** 

 0.550199 3.16e-08 
*** 

 3.52e-13 
*** 

   

MOD_115 8.58e-05 1.23e-06 3.55e-11 7.43e-12 2.50e-16 0.000170   0.831519  8.70e-10  6.33e-12  0.000155  
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

*** *** *** *** *** *** *** * *** 

MOD_116 
0.000529 
*** 

6.45e-07 
*** 

2.58e-12 
*** 

 < 2e-16 
*** 

3.93e-07 
*** 

0.000724 
*** 

    2.35e-09 
*** 

2.70e-14 
*** 

  1.23e-06 
*** 

MOD_117 
0.000428 
*** 

0.000329 
*** 

1.10e-10 
*** 

1.30e-12 
*** 

< 2e-16 
*** 

< 2e-16 
*** 

         0.000117 
*** 

MOD_118 
0.006122 
**  

6.02e-05 
*** 

6.05e-13 
*** 

3.22e-10 
*** 

4.85e-13 
*** 

2.43e-07 
*** 

0.003096 
**  

   0.618641 0.000457 
*** 

2.11e-11 
*** 

0.034938 
*   

  

MOD_119 
0.003584 
**  

1.89e-06 
*** 

1.83e-12 
*** 

2.45e-10 
*** 

1.31e-13 
*** 

0.002515 
**  

1.77e-05 
*** 

     4.96e-10 
*** 

0.007066 
**  

4.46e-07 
*** 

0.000845 
*** 

MOD_120 
0.008203 
**  

1.64e-05 
*** 

1.18e-12 
*** 

1.50e-11 
*** 

< 2e-16 
*** 

1.11e-09 
*** 

0.000101 
*** 

 0.860959  4.51e-09 
*** 

 6.79e-12 
*** 

0.059644 
.   

 3.51e-06 
*** 

MOD_121 
0.00631 
**  

7.05e-06 
*** 

5.74e-13 
*** 

2.49e-10 
*** 

7.22e-13 
*** 

4.26e-07 
*** 

0.00241 
**  

 0.32935   2.15e-11 
*** 

9.46e-12 
*** 

0.02621 
* 

  

MOD_122 
0.00373 
**  

3.77e-07 
*** 

3.65e-15 
*** 

          7.94e-14 
*** 

  

MOD_123 
0.005423 
**  

3.22e-07 
*** 

9.68e-13 
*** 

8.89e-13 
*** 

8.18e-15 
*** 

8.88e-08 
*** 

0.000369 
*** 

0.000204 
*** 

0.519787   1.52e-11 
*** 

1.47e-12 
*** 

0.073033 
.   

  

MOD_124 
0.000227 
*** 

1.19e-05 
*** 

1.31e-11 
*** 

1.93e-09 
*** 

3.75e-13 
*** 

6.60e-05 
*** 

   0.009808 
**  

  1.07e-08 
*** 

 2.93e-06 
*** 

 

MOD_125 
0.000521 
*** 

4.47e-06 
*** 

2.30e-11 
*** 

9.38e-09 
*** 

1.10e-15 
*** 

1.40e-06 
*** 

      5.79e-09 
*** 

0.002800 
**  

0.000336 
*** 

0.004538 
**  

MOD_126 
0.002107 
** 

1.15e-06 
*** 

2.59e-11 
*** 

1.42e-11 
*** 

< 2e-16 
*** 

3.67e-08 
*** 

  0.808893  5.93e-10 
*** 

 9.25e-12 
*** 

0.035575 
*   

 0.000207 
*** 

MOD_127 
0.00157 
**  

3.33e-05 
*** 

4.36e-12 
*** 

4.19e-10 
*** 

1.09e-14 
*** 

3.54e-09 
*** 

  0.46734  1.08e-06 
*** 

 2.31e-11 
*** 

0.01456 
*   

  

MOD_128 
0.00156 
**  

2.33e-05 
*** 

8.55e-13 
*** 

4.07e-08 
*** 

7.54e-14 
*** 

9.31e-08 
*** 

      7.89e-08 
*** 

0.00693 
** 

  

MOD_129 
0.000264 
*** 

2.69e-05 
*** 

1.17e-12 
*** 

 2.77e-12 
*** 

2.05e-08 
*** 

     4.15e-08 
*** 

2.44e-13 
*** 

0.013847 
*   

  

MOD_130 
3.80e-05 
*** 

0.000533 
*** 

2.46e-11 
*** 

6.19e-10 
*** 

< 2e-16 
*** 

0.000105 
*** 

 0.045861 
*   

    2.56e-08 
*** 

 0.000722 
*** 

 

MOD_131 
0.230366 1.37e-06 

*** 
4.51e-12 
*** 

6.01e-09 
*** 

3.86e-10 
*** 

2.30e-06 
*** 

2.28e-09 
*** 

3.37e-09 
*** 

   4.48e-06 
*** 

1.04e-10 
*** 

0.000504 
*** 

2.60e-09 
*** 

2.57e-10 
*** 

MOD_132 
4.45e-05 
*** 

1.47e-05 
*** 

4.78e-11 
*** 

 < 2e-16 
*** 

2.74e-10 
*** 

 0.0125 *      1.09e-08 
*** 

5.19e-13 
*** 

  3.45e-05 
*** 

MOD_133 
0.000666 
*** 

1.02e-05 
*** 

3.08e-11 
*** 

9.61e-11 
*** 

< 2e-16 
*** 

1.08e-08 
*** 

   0.087302 
.   

0.000198 
*** 

 1.06e-11 
*** 

 0.156656 0.001290 
**  

MOD_134 
0.000348 
*** 

5.94e-06 
*** 

1.28e-11 
*** 

 9.76e-14 
*** 

6.73e-11 
*** 

   0.035976 
*   

 3.39e-07 
*** 

1.00e-13 
*** 

  3.16e-06 
*** 



327 
 

Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_135 
0.00108 
**  

1.91e-05 
*** 

1.70e-11 
*** 

6.65e-11 
*** 

< 2e-16 
*** 

6.62e-12 
*** 

  0.68663 0.12484 1.21e-06 
*** 

 2.63e-11 
*** 

  5.43e-05 
*** 

MOD_136 
0.14547 2.21e-06 

*** 
2.77e-12 
*** 

1.59e-10 
*** 

5.62e-11 
*** 

4.96e-05 
*** 

5.23e-09 
*** 

9.98e-10 
*** 

    1.33e-08 
*** 

0.000114 
*** 

2.41e-13 
*** 

5.11e-11 
*** 

MOD_137 
5.56e-05 
*** 

1.38e-05 
*** 

3.05e-11 
*** 

2.11e-09 
*** 

1.85e-15 
*** 

0.000902 
*** 

  0.889436    1.50e-07 
*** 

 3.68e-06 
*** 

 

MOD_138 
1.10e-05 
*** 

0.000187 
*** 

1.22e-11 
*** 

 1.93e-15 
*** 

0.000195 
*** 

     1.81e-06 
*** 

6.14e-14 
*** 

 0.006837 
**  

 

MOD_139 
0.0315 * 7.56e-06 

*** 
1.06e-11 
*** 

5.18e-07 
*** 

< 2e-16 
*** 

6.28e-05 
*** 

1.66e-09 
*** 

1.28e-07 
*** 

   2.13e-07 
*** 

1.26e-10 
*** 

 1.23e-07 
*** 

4.00e-09 
*** 

MOD_140 
0.000112 
*** 

9.45e-06 
*** 

3.28e-13 
*** 

 1.88e-13 
*** 

1.51e-05 
*** 

0.003655 
**  

    7.78e-10 
*** 

1.26e-14 
*** 

   

MOD_141 
0.000611 
*** 

5.29e-06 
*** 

1.19e-11 
*** 

 1.56e-12 
*** 

3.44e-11 
*** 

 0.005222 
**  

   2.39e-08 
*** 

9.31e-13 
*** 

0.004718 
**  

 2.36e-05 
*** 

MOD_142 
0.000876 
*** 

2.59e-05 
*** 

6.66e-13 
*** 

2.74e-08 
*** 

5.59e-11 
*** 

4.92e-08 
*** 

   0.010702 
*   

  1.02e-07 
*** 

   

MOD_143 
0.005320 
**  

1.47e-05 
*** 

2.49e-12 
*** 

3.74e-12 
*** 

3.99e-13 
*** 

0.000272 
*** 

1.00e-05 
*** 

0.017564 
*   

  0.520455 0.002150 
**  

1.54e-11 
*** 

0.046579 
*   

0.002705 
**  

 

MOD_144 
0.00266 
**  

4.90e-07 
*** 

1.23e-12 
*** 

 4.59e-13 
*** 

1.98e-07 
*** 

0.00293 
**  

    1.49e-08 
*** 

7.82e-14 
*** 

0.05312 .    2.13e-06 
*** 

MOD_145 
0.000355 
*** 

6.12e-06 
*** 

1.43e-11 
*** 

1.92e-09 
*** 

8.42e-14 
*** 

2.40e-05 
*** 

 0.139276     3.46e-09 
*** 

0.004814 
**  

0.000141 
*** 

 

MOD_146 
3.89e-05 
*** 

4.30e-05 
*** 

5.96e-11 
*** 

 < 2e-16 
*** 

1.06e-06 
*** 

     1.04e-06 
*** 

1.30e-13 
*** 

 0.107 4.71e-05 
*** 

MOD_147 
5.48e-06 
*** 

2.86e-06 
*** 

7.47e-12 
*** 

 < 2e-16 
*** 

3.07e-08 
*** 

      3.11e-10 
*** 

  9.77e-07 
*** 

MOD_148 
1.38e-05 
*** 

1.17e-05 
*** 

2.02e-12 
*** 

 < 2e-16 
*** 

2.39e-05 
*** 

    0.000112 
*** 

 1.08e-13 
*** 

   

MOD_149 
0.00038 
*** 

5.77e-06 
*** 

3.61e-12 
*** 

 4.81e-15 
*** 

0.00219 
**  

4.26e-05 
*** 

    1.30e-07 
*** 

8.60e-15 
*** 

 0.00477 
**  

1.58e-05 
*** 

MOD_150 
0.00523 
**  

9.20e-07 
*** 

2.30e-12 
*** 

2.53e-12 
*** 

1.43e-12 
*** 

0.00084 
*** 

8.49e-06 
*** 

0.03648 
*   

0.36778   1.72e-08 
*** 

1.86e-12 
*** 

0.03667 
*   

0.00154 
**  

 

MOD_151 
8.14e-05 
*** 

9.63e-06 
*** 

3.13e-11 
*** 

 < 2e-16 
*** 

2.42e-10 
*** 

  0.212   3.22e-08 
*** 

5.85e-13 
*** 

  2.43e-06 
*** 

MOD_152 
0.006296 
**  

0.000173 
*** 

2.68e-12 
*** 

8.54e-12 
*** 

2.00e-15 
*** 

9.79e-05 
*** 

3.13e-06 
*** 

 0.646351  8.13e-05 
*** 

 2.67e-12 
*** 

0.036468 
*   

0.001099 
**  

0.000531 
*** 

MOD_153 
0.002505 
**  

0.000364 
*** 

1.35e-12 
*** 

7.88e-11 
*** 

2.19e-11 
*** 

0.021123 
*   

8.11e-05 
*** 

0.128439     3.17e-10 
*** 

0.010599 
*   

2.76e-07 
*** 

 

MOD_154 0.000701 0.001061 6.29e-11 1.65e-14 1.97e-14 < 2e-16      0.016931     
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
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*** **  *** *** *** *** *   

MOD_155 
0.000701 
*** 

1.13e-05 
*** 

6.29e-11 
*** 

1.65e-14 
*** 

1.97e-14 
*** 

< 2e-16 
*** 

     0.016931 
*   

    

MOD_156 
0.000295 
*** 

3.15e-06 
*** 

2.52e-12 
*** 

 1.96e-15 
*** 

1.30e-07 
*** 

0.000416 
*** 

0.008557 
**  

   2.91e-10 
*** 

7.13e-14 
*** 

  1.98e-05 
*** 

MOD_157 
0.000804 
*** 

0.000599 
*** 

3.21e-10 
*** 

1.79e-13 
*** 

< 2e-16 
*** 

< 2e-16 
*** 

     0.013043 
* 

   0.000109 
*** 

MOD_158 
0.000804 
*** 

0.000599 
*** 

3.21e-10 
*** 

1.79e-13 
*** 

< 2e-16 
*** 

5.14e-16 
*** 

     0.013043 
*   

   0.000109 
*** 

MOD_159 
8.02e-05 
*** 

5.98e-05 
*** 

5.21e-11 
*** 

 < 2e-16 
*** 

4.72e-10 
*** 

    0.350464 0.000529 
*** 

2.04e-11 
*** 

  3.32e-06 
*** 

MOD_160 
0.000491 
*** 

0.000650 
*** 

1.70e-11 
*** 

4.65e-09 
*** 

7.49e-14 
*** 

8.90e-05 
*** 

  0.484035    1.64e-08 
*** 

0.002340 
**  

1.23e-06 
*** 

 

MOD_161 
0.00356 
**  

5.22e-06 
*** 

1.32e-12 
*** 

2.04e-10 
*** 

2.60e-12 
*** 

0.07141 .   4.26e-05 
*** 

 0.17321    2.24e-09 
*** 

0.00419 
**  

1.23e-09 
*** 

 

MOD_162 
0.19478 4.99e-05 

*** 
3.78e-12 
*** 

1.48e-09 
*** 

1.68e-10 
*** 

8.78e-06 
*** 

3.06e-09 
*** 

1.41e-09 
*** 

  0.01441 
*   

 1.56e-10 
*** 

0.00055 
*** 

1.56e-10 
*** 

1.24e-10 
*** 

MOD_163 
0.000953 
*** 

2.66e-05 
*** 

4.71e-13 
*** 

1.06e-08 
*** 

6.71e-16 
*** 

1.75e-05 
*** 

0.086560 
.   

     3.08e-07 
*** 

   

MOD_164 
7.88e-05 
*** 

1.85e-05 
*** 

1.44e-12 
*** 

 1.68e-11 
*** 

1.61e-08 
*** 

   0.0585 .  9.72e-08 
*** 

4.54e-14 
*** 

   

MOD_165 
2.51e-06 
*** 

4.28e-06 
*** 

4.18e-10 
*** 

 7.69e-15 
*** 

 0.059 .         2.64e-09 
*** 

   

MOD_166 
0.000462 
*** 

2.56e-05 
*** 

1.85e-11 
*** 

 5.65e-14 
*** 

3.48e-07 
*** 

     4.58e-06 
*** 

2.83e-13 
*** 

0.010653 
*   

0.062012 
.   

9.20e-05 
*** 

MOD_167 
2.41e-05 
*** 

3.77e-05 
*** 

7.00e-12 
*** 

 < 2e-16 
*** 

2.19e-08 
*** 

 0.13    6.66e-08 
*** 

5.63e-14 
*** 

   

MOD_168 
1.44e-06 
*** 

8.64e-05 
*** 

5.25e-12 
*** 

 < 2e-16 
*** 

0.00935 
**  

      1.67e-11 
*** 

 1.58e-05 
*** 

 

MOD_169 
0.000318 
*** 

2.73e-05 
*** 

1.96e-12 
*** 

2.87e-08 
*** 

< 2e-16 
*** 

6.89e-07 
*** 

  0.654626    2.05e-06 
*** 

   

MOD_170 
0.000825 
*** 

3.08e-06 
*** 

3.53e-11 
*** 

5.68e-13 
*** 

< 2e-16 
*** 

< 2e-16 
*** 

0.060696 
.   

        3.22e-05 
*** 

MOD_171 
0.001060 
**  

4.50e-05 
*** 

1.48e-11 
*** 

 7.43e-16 
*** 

6.29e-11 
*** 

    0.163739 0.000251 
*** 

3.49e-11 
*** 

0.006834 
**  

 3.51e-06 
*** 

MOD_172 
2.00e-05 
*** 

8.38e-05 
*** 

4.06e-12 
*** 

 3.55e-16 
*** 

6.92e-08 
*** 

    0.61332 0.000774 
*** 

1.81e-12 
*** 

   

MOD_173 
0.002293 
**  

0.000102 
*** 

8.56e-14 
*** 

6.06e-07 
*** 

5.00e-10 
*** 

 0.002504 
**  

     1.83e-12 
*** 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_174 
0.025902 
*   

4.11e-06 
*** 

8.92e-12 
*** 

1.14e-07 
*** 

< 2e-16 
*** 

0.000241 
*** 

3.39e-09 
*** 

4.70e-08 
*** 

  0.001013 
**  

 1.01e-10 
*** 

 1.06e-08 
*** 

1.74e-09 
*** 

MOD_175 
0.000758 
*** 

3.30e-05 
*** 

2.57e-12 
*** 

 < 2e-16 
*** 

1.12e-07 
*** 

0.000211 
*** 

   0.112705 2.40e-05 
*** 

4.36e-12 
*** 

  4.59e-07 
*** 

MOD_176 
0.00122 
**  

1.16e-06 
*** 

1.55e-12 
*** 

 2.49e-12 
*** 

1.44e-07 
*** 

0.00311 
**  

  0.13624  2.50e-08 
*** 

2.19e-14 
*** 

  1.01e-06 
*** 

MOD_177 
2.02e-05 
*** 

2.98e-05 
*** 

3.78e-12 
*** 

 < 2e-16 
*** 

6.56e-08 
*** 

  0.963   1.85e-08 
*** 

2.42e-12 
*** 

   

MOD_178 
0.000754 
*** 

3.44e-06 
*** 

1.06e-11 
*** 

 3.82e-15 
*** 

8.83e-11 
*** 

  0.437705   1.41e-07 
*** 

7.66e-13 
*** 

0.028319 
*   

 6.73e-06 
*** 

MOD_179 
0.000799 
*** 

9.27e-06 
*** 

1.20e-11 
*** 

7.20e-14 
*** 

3.45e-15 
*** 

1.81e-15 
*** 

0.335658          

MOD_180 
0.00182 
**  

5.05e-07 
*** 

1.13e-12 
*** 

 3.51e-11 
*** 

3.74e-08 
*** 

0.00264 
**  

0.00503 
**  

   1.70e-09 
*** 

1.70e-13 
*** 

0.02612 
*   

 1.71e-05 
*** 

MOD_181 
0.000516 
*** 

7.13e-07 
*** 

2.76e-12 
*** 

 < 2e-16 
*** 

3.43e-07 
*** 

0.001419 
**  

 0.563683   2.01e-09 
*** 

1.52e-13 
*** 

  1.29e-06 
*** 

MOD_182 
0.000206 
*** 

3.28e-06 
*** 

3.80e-12 
*** 

 8.04e-13 
*** 

0.003226 
**  

1.52e-05 
*** 

0.003884 
**  

   2.74e-08 
*** 

2.32e-14 
*** 

 0.001824 
**  

2.77e-05 
*** 

MOD_183 
0.00365 
**  

1.84e-06 
*** 

1.82e-12 
*** 

2.84e-10 
*** 

2.35e-13 
*** 

0.00411 
**  

1.57e-05 
*** 

 0.5896    1.21e-09 
*** 

0.00654 
**  

4.04e-07 
*** 

0.00197 
**  

MOD_184 
0.000299 
*** 

1.86e-05 
*** 

9.13e-11 
*** 

0.11856 < 2e-16 
*** 

2.90e-10 
*** 

 0.003919 
**  

   1.59e-08 
*** 

1.34e-10 
*** 

  2.89e-05 
*** 

MOD_185 
0.006390 
** 

5.56e-06 
*** 

2.40e-11 
*** 

0.022568 
* 

8.69e-13 
*** 

1.09e-11 
*** 

 0.000429 
*** 

   2.97e-08 
*** 

7.37e-11 
*** 

0.001270 
** 

 4.77e-06 
*** 

MOD_186 
0.000522 
*** 

4.49e-06 
*** 

2.33e-11 
*** 

1.04e-08 
*** 

< 2e-16 
*** 

1.52e-06 
*** 

  0.966924    9.45e-09 
*** 

0.004010 
**  

0.000336 
*** 

0.005724 
**  

MOD_187 
0.00036 
*** 

8.40e-06 
*** 

2.38e-11 
*** 

 5.14e-11 
*** 

6.36e-07 
*** 

 0.00302 
** 

   1.12e-06 
*** 

6.36e-13 
*** 

0.00327 
**  

0.02929 
*   

4.51e-05 
*** 

MOD_188 
5.91e-05 
*** 

1.52e-05 
*** 

2.21e-13 
*** 

 4.18e-12 
*** 

1.40e-06 
*** 

      1.43e-10 
*** 

0.0104 *   

MOD_189 
0.0424 *   6.65e-05 

*** 
3.61e-14 
*** 

2.66e-06 
*** 

       9.68e-10 
*** 

5.71e-15 
*** 

   

MOD_190 
0.004680 
**  

4.63e-06 
*** 

3.69e-12 
*** 

0.010517 
*   

< 2e-16 
*** 

4.39e-09 
*** 

4.82e-05 
*** 

0.000376 
*** 

   2.07e-10 
*** 

2.48e-11 
*** 

  2.31e-06 
*** 

MOD_191 
0.003061 
**  

0.000584 
*** 

7.03e-11 
*** 

1.76e-13 
*** 

< 2e-16 
*** 

< 2e-16 
*** 

0.007167 
**  

    0.003648 
**  

   4.31e-06 
*** 

MOD_192 
0.001546 
**  

7.59e-06 
*** 

1.70e-12 
*** 

 3.73e-09 
*** 

0.001879 
**  

9.30e-05 
*** 

0.002097 
**  

   2.48e-07 
*** 

5.13e-14 
*** 

0.024748 
*   

0.000947 
*** 

2.56e-05 
*** 

MOD_193 0.000781 0.000149 1.53e-11  4.98e-12 1.97e-11  0.004657   0.136458 8.58e-05 5.81e-11 0.002070  1.69e-05 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

*** *** *** *** *** **  *** *** **  *** 

MOD_194 
5.62e-07 
*** 

1.56e-05 
*** 

5.92e-10 
*** 

0.0133 * 6.66e-15 
*** 

0.0270 *         3.27e-09 
*** 

   

MOD_195 
0.000842 
*** 

2.12e-06 
*** 

1.29e-12 
*** 

 2.38e-10 
*** 

2.88e-08 
*** 

0.002876 
**  

0.005105 
**  

 0.066464 
.   

 3.49e-09 
*** 

5.57e-14 
*** 

  1.31e-05 
*** 

MOD_196 
0.000584 
*** 

5.77e-06 
*** 

1.14e-11 
*** 

 8.55e-13 
*** 

2.69e-11 
*** 

 0.005160 
**  

0.404275   1.75e-08 
*** 

1.43e-12 
*** 

0.012258 
*   

 2.21e-05 
*** 

MOD_197 
2.30e-05 
*** 

4.45e-05 
*** 

3.64e-13 
*** 

 1.18e-11 
*** 

       9.90e-15 
*** 

   

MOD_198 
0.000554 
*** 

0.000119 
*** 

3.46e-12 
*** 

 6.15e-15 
*** 

0.000797 
*** 

1.48e-05 
*** 

   0.139607 0.000118 
*** 

1.12e-12 
*** 

 0.006391 
**  

6.13e-06 
*** 

MOD_199 
0.030609 
* 

2.75e-07 
*** 

1.54e-12 
*** 

0.002562 
**  

2.75e-13 
*** 

4.07e-10 
*** 

0.000314 
*** 

7.81e-05 
*** 

   1.09e-09 
*** 

2.21e-11 
*** 

0.006518 
**  

 7.35e-07 
*** 

MOD_200 
0.000817 
*** 

4.95e-06 
*** 

2.40e-12 
*** 

 3.44e-11 
*** 

0.001010 
**  

0.000227 
*** 

  0.180896  8.88e-07 
*** 

7.52e-15 
*** 

 0.006162 
**  

1.38e-05 
*** 

MOD_201 
0.000373 
*** 

9.55e-05 
*** 

2.17e-12 
*** 

 3.49e-15 
*** 

3.41e-08 
*** 

0.000103 
*** 

0.007905 
**  

  0.094247 
.   

7.25e-06 
*** 

9.19e-12 
*** 

  1.52e-05 
*** 

MOD_202 
0.004439 
**  

4.84e-06 
*** 

8.91e-11 
*** 

2.01e-05 
*** 

8.12e-12 
*** 

1.18e-07 
*** 

 3.56e-06 
*** 

    2.84e-08 
*** 

0.000101 
*** 

4.37e-07 
*** 

9.03e-08 
*** 

MOD_203 
8.69e-06 
*** 

2.95e-06 
*** 

8.65e-12 
*** 

0.865 < 2e-16 
*** 

1.02e-07 
*** 

      5.55e-10 
*** 

  9.95e-07 
*** 

MOD_204 
0.000383 
*** 

5.95e-06 
*** 

3.70e-12 
*** 

 4.59e-15 
*** 

0.002982 
**  

8.37e-05 
*** 

 0.970446   1.56e-07 
*** 

6.71e-14 
*** 

 0.005758 
**  

3.10e-05 
*** 

MOD_205 
0.000278 
*** 

3.03e-06 
*** 

2.75e-12 
*** 

 < 2e-16 
*** 

1.02e-07 
*** 

0.000922 
*** 

0.008137 
**  

0.472428   2.28e-10 
*** 

2.94e-13 
*** 

  1.89e-05 
*** 

MOD_206 
2.03e-05 
*** 

1.35e-05 
*** 

1.98e-13 
*** 

 1.52e-10 
*** 

6.42e-07 
*** 

   0.0107 *   5.51e-11 
*** 

   

MOD_207 
4.95e-05 
*** 

6.93e-05 
*** 

4.63e-11 
*** 

0.401028 < 2e-16 
*** 

7.75e-09 
*** 

    0.31201 0.000375 
*** 

1.99e-11 
*** 

  1.35e-05 
*** 

MOD_208 
3.27e-06 
*** 

3.64e-06 
*** 

1.57e-12 
*** 

 < 2e-16 
*** 

7.67e-07 
*** 

 0.0167 *     1.26e-10 
*** 

   

MOD_209 
0.002833 
**  

8.30e-05 
*** 

7.58e-13 
*** 

 1.71e-10 
*** 

4.18e-09 
*** 

0.000493 
*** 

0.003879 
**  

  0.038574 
*   

3.66e-06 
*** 

1.95e-11 
*** 

0.010519 
*   

 1.08e-05 
*** 

MOD_210 
1.47e-05 
*** 

0.000182 
*** 

1.31e-11 
*** 

0.007421 
**  

4.53e-11 
*** 

      3.17e-07 
*** 

< 2e-16 
*** 

  0.004032 
**  

MOD_211 
0.000216 
*** 

2.40e-05 
*** 

5.89e-11 
*** 

0.097648 
. 

< 2e-16 
*** 

6.17e-10 
*** 

 0.003147 
**  

  0.000236 
*** 

 1.09e-10 
*** 

  2.40e-05 
*** 

MOD_212 
0.003049 
**  

2.52e-05 
*** 

2.05e-12 
*** 

0.012204 
*   

< 2e-16 
*** 

4.17e-09 
*** 

4.08e-05 
*** 

0.000341 
*** 

  5.45e-07 
*** 

 2.70e-11 
*** 

  2.33e-06 
*** 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_213 
0.003925 
**  

2.39e-05 
*** 

1.85e-11 
*** 

0.026992 
*   

2.48e-13 
*** 

1.87e-11 
*** 

 0.000475 
*** 

  6.12e-05 
*** 

 1.03e-10 
*** 

0.001743 
**  

 5.18e-06 
*** 

MOD_214 
0.000721 
*** 

5.42e-05 
*** 

1.33e-11 
*** 

0.425468 1.05e-13 
*** 

1.00e-09 
*** 

    0.143077 0.000180 
*** 

3.19e-11 
*** 

0.007650 
**  

 1.46e-05 
*** 

MOD_215 
0.000548 
*** 

8.17e-06 
*** 

2.23e-12 
*** 

 6.18e-09 
*** 

0.001043 
**  

0.000145 
*** 

0.002556 
**  

 0.094975 
.   

 2.40e-07 
*** 

2.12e-14 
*** 

 0.002593 
**  

2.05e-05 
*** 

MOD_216 
1.07e-05 
*** 

8.35e-06 
*** 

2.04e-13 
*** 

 1.07e-15 
*** 

0.000142 
*** 

0.138446      2.04e-10 
*** 

   

MOD_217 
0.000264 
*** 

6.69e-05 
*** 

3.23e-12 
*** 

 9.05e-13 
*** 

0.001093 
**  

4.93e-06 
*** 

0.003980 
**  

  0.130177 5.44e-05 
*** 

2.19e-12 
*** 

 0.002791 
**  

2.11e-05 
*** 

MOD_218 
0.000656 
*** 

3.85e-05 
*** 

2.48e-12 
*** 

0.64467 < 2e-16 
*** 

3.80e-07 
*** 

0.000279 
*** 

   0.103965 2.09e-05 
*** 

5.33e-12 
*** 

  1.13e-06 
*** 

MOD_219 
0.00175 
**  

1.57e-06 
*** 

1.21e-12 
*** 

 2.82e-11 
*** 

3.49e-08 
*** 

0.00347 
**  

0.00501 
**  

0.66294   1.63e-09 
*** 

3.97e-13 
*** 

0.03915 
*   

 1.90e-05 
*** 

MOD_220 
3.56e-06 
*** 

9.31e-06 
*** 

8.23e-13 
*** 

 < 2e-16 
*** 

4.37e-06 
*** 

  0.396    7.84e-09 
*** 

   

MOD_221 
0.018949 
*   

2.63e-05 
*** 

8.57e-13 
*** 

0.003944 
**  

7.67e-12 
*** 

3.10e-10 
*** 

0.000182 
*** 

8.51e-05 
*** 

  1.99e-07 
*** 

 3.84e-11 
*** 

0.006992 
**  

 8.59e-07 
*** 

MOD_222 
0.0432 * 1.00e-05 

*** 
< 2e-16 
*** 

   5.63e-08 
*** 

    5.27e-10 
*** 

< 2e-16 
*** 

   

MOD_223 
0.000207 
*** 

3.31e-06 
*** 

3.95e-12 
*** 

 7.34e-13 
*** 

0.004139 
**  

3.48e-05 
*** 

0.928977    3.23e-08 
*** 

1.46e-13 
*** 

 0.002421 
**  

3.54e-05 
*** 

MOD_224 
0.002402 
**  

5.29e-05 
*** 

1.13e-12 
*** 

 2.78e-10 
*** 

0.000314 
*** 

1.99e-05 
*** 

0.001865 
**  

  0.052707 
.   

3.11e-05 
*** 

5.07e-12 
*** 

0.011269 
*   

0.001646 
**  

1.58e-05 
*** 

MOD_225 
0.00047 
*** 

7.10e-05 
*** 

2.72e-11 
*** 

 9.09e-11 
*** 

3.24e-07 
*** 

 0.00301 
**  

  0.20017 0.00055 
*** 

2.97e-11 
*** 

0.00176 
**  

0.05293 .   3.36e-05 
*** 

MOD_226 
0.000365 
*** 

8.28e-06 
*** 

2.26e-11 
*** 

 3.55e-11 
*** 

4.91e-07 
*** 

 0.003069 
**  

0.540489   9.50e-07 
*** 

1.19e-12 
*** 

0.007447 
**  

0.035055 
*   

4.64e-05 
*** 

MOD_227 
0.002312 
**  

2.03e-05 
*** 

1.55e-11 
*** 

0.029295 
*   

9.14e-12 
*** 

2.28e-11 
*** 

 0.000528 
*** 

 0.005601 
**  

0.000520 
*** 

 1.29e-10 
*** 

  4.60e-06 
*** 

MOD_228 
0.000279 
*** 

5.15e-05 
*** 

1.57e-11 
*** 

0.412255 1.14e-12 
*** 

1.09e-09 
*** 

   0.027920 
*   

0.23232 0.000353 
*** 

1.51e-11 
*** 

  8.30e-06 
*** 

MOD_229 
0.001550 
**  

7.58e-06 
*** 

1.74e-12 
*** 

 4.75e-09 
*** 

0.002654 
**  

0.000118 
*** 

0.002120 
**  

0.890616   3.39e-07 
*** 

1.84e-13 
*** 

0.027083 
*   

0.001040 
**  

3.76e-05 
*** 

MOD_230 
7.91e-06 
*** 

1.52e-06 
*** 

2.34e-12 
*** 

0.096205 
.   

2.84e-13 
*** 

       3.37e-15 
*** 

  0.000333 
*** 

MOD_231 
0.016987 
* 

0.000169 
*** 

7.47e-15 
*** 

        3.63e-08 
*** 

1.58e-15 
*** 

   

MOD_232 0.0658 .   5.95e-05 < 2e-16 1.05e-06   1.07e-05      7.42e-11    
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*** *** *** *** *** 

MOD_233 
0.00629 
**  

2.22e-05 
*** 

4.21e-15 
*** 

         1.02e-13 
*** 

1.12e-05 
*** 

  

MOD_234 
0.02774 
* 

0.00013 
*** 

9.38e-15 
*** 

8.10e-06 
*** 

        6.02e-10 
*** 

   

MOD_235 
0.00331 
** 

2.69e-05 
*** 

2.26e-15 
*** 

      7.69e-06 
*** 

  1.81e-14 
*** 

   

MOD_236 
8.82e-06 
*** 

5.21e-07 
*** 

2.24e-10 
*** 

 < 2e-16 
*** 

< 2e-16 
*** 

         3.77e-06 
*** 

MOD_237 
4.46e-06 
*** 

5.73e-05 
*** 

2.89e-11 
*** 

 < 2e-16 
*** 

< 2e-16 
*** 

          

MOD_238 
0.014125 
* 

0.000148 
*** 

6.84e-15 
*** 

       8.82e-07 
*** 

 8.00e-14 
*** 

   

MOD_239 
0.0039 
**  

1.30e-06 
*** 

1.83e-14 
*** 

         6.21e-12 
*** 

 1.61e-05 
*** 

 

MOD_240 
0.00989 
**  

6.98e-06 
*** 

< 2e-16 
*** 

   1.32e-05 
*** 

     1.00e-12 
*** 

   

MOD_241 
0.036547 
*   

0.000102 
*** 

8.84e-15 
*** 

3.79e-06 
*** 

 0.283784       1.66e-07 
*** 

   

MOD_242 
0.00544 
**  

6.07e-08 
*** 

2.64e-15 
*** 

         8.71e-12 
*** 

   

MOD_243 
0.027091 
*   

0.000121 
*** 

1.78e-14 
*** 

2.08e-05 
*** 

        7.24e-10 
*** 

  0.517517 

MOD_244 
1.01e-05 
*** 

3.14e-05 
*** 

3.69e-11 
*** 

 4.63e-16 
*** 

1.12e-15 
*** 

     0.000922 
*** 

    

MOD_245 
0.000335 
*** 

4.64e-06 
*** 

1.20e-11 
*** 

 9.24e-14 
*** 

0.004349 
**  

      1.02e-09 
*** 

   

MOD_246 
0.025 *   7.76e-05 

*** 
1.75e-13 
*** 

1.72e-10 
*** 

 2.50e-08 
*** 

          

MOD_247 
5.21e-06 
*** 

5.57e-05 
*** 

3.04e-11 
*** 

 1.65e-15 
*** 

< 2e-16 
*** 

0.816          

MOD_248 
0.000624 
*** 

0.000107 
*** 

9.87e-11 
*** 

3.02e-12 
*** 

3.93e-07 
*** 

           

MOD_249 
0.0520 .   5.32e-05 

*** 
7.52e-14 
*** 

1.99e-11 
*** 

 3.39e-08 
*** 

0.0345 *            

MOD_250 
9.43e-08 
*** 

2.24e-06 
*** 

.59e-08 
*** 

 7.83e-13 
*** 

           

MOD_251 
0.00726 
**  

2.15e-05 
*** 

2.21e-14 
*** 

         3.05e-11 
*** 

  0.01718 * 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_252 
0.00602 
**  

9.36e-05 
*** 

4.85e-11 
*** 

4.20e-13 
*** 

3.84e-06 
*** 

 0.01349 
* 

         

MOD_253 
0.00111 
** 

5.58e-06 
*** 

2.87e-13 
*** 

         3.16e-10 
*** 

   

MOD_254 
0.000645 
*** 

2.87e-05 
*** 

1.30e-10 
*** 

0.661307 2.63e-13 
*** 

0.000681 
*** 

     6.93e-07 
*** 

3.07e-11 
*** 

   

MOD_255 
0.001774 
** 

0.000421 
*** 

8.93e-11 
*** 

8.05e-10 
*** 

5.51e-07 
*** 

      5.95e-05 
*** 

    

MOD_256 
0.001774 
**  

0.000364 
*** 

8.93e-11 
*** 

8.05e-10 
*** 

5.51e-07 
*** 

      5.95e-05 
*** 

    

MOD_257 
0.0067 
**  

2.70e-05 
*** 

5.11e-15 
*** 

    0.6297     1.09e-11 
*** 

   

MOD_258 
0.00509 
** 

2.25e-05 
*** 

2.26e-15 
*** 

     0.46506    2.68e-10 
*** 

   

MOD_259 
0.0056 
**  

2.04e-05 
*** 

3.26e-15 
*** 

  0.635       4.63e-10 
*** 

   

MOD_260 
0.050790 
.   

0.000361 
*** 

5.07e-13 
*** 

1.66e-10 
*** 

 7.35e-08 
*** 

     0.015059 
*   

    

MOD_261 
0.000431 
*** 

4.82e-06 
*** 

1.63e-11 
*** 

0.779133 8.25e-14 
*** 

0.006217 
**  

      1.80e-08 
*** 

   

MOD_262 
0.0277 * 3.36e-05 

*** 
3.47e-13 
*** 

5.89e-10 
*** 

 4.55e-08 
*** 

         0.2324 

MOD_263 
0.000497 
*** 

9.00e-05 
*** 

1.96e-10 
*** 

1.73e-11 
*** 

2.50e-07 
*** 

          0.182299 

MOD_264 
0.004228 
**  

0.000153 
*** 

4.28e-12 
*** 

3.48e-10 
*** 

            

MOD_265 
0.018381 
*   

0.000125 
*** 

1.72e-12 
*** 

6.63e-11 
*** 

  0.008442 
**  

         

MOD_266 
0.053647 
. 

0.000759 
*** 

5.86e-13 
*** 

4.78e-09 
*** 

  0.011196 
* 

    1.01e-05 
*** 

    

MOD_267 
0.018561 
*   

0.000845 
*** 

3.98e-12 
*** 

3.25e-08 
*** 

       6.42e-05 
*** 

    

MOD_268 
0.0293 * 4.14e-07 

*** 
7.16e-14 
*** 

         2.92e-10 
*** 

   

MOD_269 
0.004003 
**  

0.000134 
*** 

8.50e-12 
*** 

1.90e-09 
*** 

           0.262752 

MOD_270 
0.00169 
**  

3.03e-06 
*** 

2.80e-13 
*** 

  6.63e-12 
*** 

          

MOD_271 2.36e-05 2.78e-06 4.69e-12  1.90e-07      1.36e-07      
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

*** *** *** *** *** 

MOD_272 
6.25e-05 
*** 

0.000253 
*** 

3.00e-11 
*** 

 2.43e-06 
*** 

      8.40e-08 
*** 

    

MOD_273 
2.42e-05 
*** 

4.39e-05 
*** 

9.23e-11 
*** 

 4.35e-07 
*** 

   5.86e-06 
*** 

       

MOD_274 
0.00354 
** 

2.86e-06 
*** 

1.70e-13 
*** 

  2.91e-10 
*** 

0.09522 .          

MOD_275 
0.00337 
**  

6.74e-06 
*** 

1.89e-12 
*** 

  3.31e-11 
*** 

         0.00257 
** 

MOD_276 
7.78e-06 
*** 

3.34e-06 
*** 

4.09e-10 
*** 

 1.35e-07 
*** 

         3.34e-06 
*** 

 

MOD_277 
0.004978 
**  

0.000263 
*** 

2.37e-13 
*** 

  6.86e-07 
*** 

     0.000998 
*** 

    

MOD_278 
0.000213 
*** 

0.000261 
*** 

4.93e-12 
*** 

 7.20e-05 
*** 

 0.004108 
**  

    1.07e-08 
*** 

    

MOD_279 
1.58e-05 
*** 

2.50e-05 
*** 

1.03e-10 
*** 

 4.11e-05 
*** 

           

MOD_280 
1.76e-05 
*** 

0.000349 
*** 

1.65e-10 
*** 

             

MOD_281 
0.002226 
** 

0.000334 
*** 

1.23e-12 
*** 

        4.71e-07 
*** 

    

MOD_282 
0.005538 
**  

0.000286 
*** 

1.73e-13 
*** 

   0.006555 
**  

    4.23e-08 
*** 

    

MOD_283 
0.000952 
*** 

1.46e-05 
*** 

1.76e-13 
*** 

       1.07e-05 
*** 

     

MOD_284 
1.87e-05 
*** 

2.27e-05 
*** 

5.60e-10 
*** 

 2.07e-05 
*** 

          2.07e-05 
*** 

MOD_285 
1.87e-05 
*** 

2.27e-05 
*** 

5.60e-10 
*** 

 2.07e-05 
*** 

          0.000571 
*** 

MOD_286 
0.000200 
*** 

3.27e-06 
*** 

1.74e-11 
*** 

           1.86e-05 
*** 

 

MOD_287 
0.000142 
* 

2.62e-05 
*** 

5.71e-11 
*** 

 0.000515  0.029260 
* 

         

MOD_288 
0.000142 
*** 

2.62e-05 
*** 

5.71e-11 
*** 

 0.000515 
*** 

 0.029260 
* 

         

MOD_289 
0.000626 
*** 

3.04e-05 
*** 

2.07e-12 
*** 

     0.000128 
*** 

       

MOD_290 
0.003102 
**  

0.000355 
*** 

1.21e-11 
*** 

        1.30e-06 
*** 

   0.001747 
** 
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Model ID 

Covariate 

Width 
field 

Speed Douglas SST CHL ZEU ZEU_STD PAR PAR_STD DEP DEP_ASP
_sin 

DEP_ASP
_cos 

DEP_SL Depth YEAR MONTH 

MOD_291 
0.000885 
*** 

1.90e-05 
*** 

2.66e-12 
*** 

   0.006498 
**  

         

MOD_292 
0.000187 
*** 

2.67e-05 
*** 

2.49e-10 
*** 

 4.12e-05 
*** 

           

MOD_293 
0.000284 
*** 

1.75e-05 
*** 

3.56e-11 
*** 

            0.000682 
*** 

MOD_294 
9.42e-06 
*** 

8.91e-06 
*** 

1.31e-10 
*** 

 9.19e-06 
*** 

    0.102       

MOD_295 
3.77e-05 
*** 

9.16e-06 
*** 

1.76e-10 
*** 

 5.79e-05 
*** 

  0.152         

MOD_296 
0.00166 
**  

1.60e-05 
*** 

1.64e-11 
*** 

             

MOD_297 
0.000320 
*** 

2.61e-05 
*** 

1.02e-11 
*** 

    0.110075         

MOD_298 
0.000146 
*** 

1.80e-05 
*** 

8.65e-12 
*** 

      0.344863       

MOD_299 
0.008364 
** 

0.000280 
*** 

5.92e-14 
*** 

  1.21e-06 
*** 

0.026893 
* 

    0.000213 
*** 

    

MOD_300 
0.008830 
** 

0.000228 
*** 

1.23e-12 
*** 

   0.000105 
*** 

    3.65e-08 
*** 

   0.000139 
*** 

MOD_301 
0.103 1.97e-06 

*** 
2.36e-16 
*** 

3.12e-07 
*** 

  3.75e-08 
*** 

    8.80e-12 
*** 

< 2e-16 
*** 

   

MOD_302 
0.000402 
*** 

5.15e-05 
*** 

6.71e-14 
*** 

   9.89e-06 
*** 

    5.83e-09 
*** 

< 2e-16 
*** 

   

MOD_303 
0.0454 * 2.95e-08 

*** 
< 2e-16 
*** 

  0.8037 2.91e-07 
*** 

    5.03e-10 
*** 

1.11e-15 
*** 

   

MOD_304 
0.08966 .   4.94e-06 

*** 
4.11e-16 
*** 

   3.53e-09 
*** 

    4.57e-10 
*** 

< 2e-16 
*** 

  0.00161 
**  

MOD_305 
0.002405 
**  

0.000202 
*** 

2.47e-13 
*** 

1.65e-08 
*** 

2.59e-09 
*** 

 7.07e-06 
*** 

    3.37e-11 
*** 

< 2e-16 
*** 

   

MOD_306 
0.000112 
*** 

9.45e-06 
*** 

3.28e-13 
*** 

 1.88e-13 
*** 

1.51e-05 
*** 

0.003655 
**  

    7.78e-10 
*** 

1.26e-14 
*** 

   

MOD_307 
0.00105 
**  

2.33e-05 
*** 

4.40e-13 
*** 

 1.10e-09 
*** 

 4.07e-07 
*** 

    1.88e-08 
*** 

< 2e-16 
*** 

  3.46e-05 
*** 
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Appendix IX. Observation points along the Galician coast a) kept for the whole study period 

and, b) dropped out according with Pierce et al 2010. The alphanumeric code is the 

identification code of the Observation Point at the database of CEMMA. 

Observation Point Latitude Longitude 

1 
SA.1 

LU1-I-B Pta. do Castro, Reinante 43.563 -7.177 

2 LU1-I-C Pto. de Burela 43.656 -7.344 

3 

SA.2 

C2-II-C Estaca de Bares 43.786 -7.677 

4 C2-II-D Mdor. Sto. Antonio, Espasante 43.726 -7.810 

5 C2-III-A F. Cabo Ortegal 43.771 -7.870 

6 C2-III-C F. Pta. Candieira 43.710 -8.048 

7 C2-III-E F. Cabo Prior 43.568 -8.314 

8 C3-IV-A A Graña/ Cabo Prioriño 43.470 / 43.460 -8.269 / -8.340 

9 

SA.3 

C3-V-A Pta. Alta. Barrañán 43.313 -8.561 

10 C3-V-B Pta. das Olas, Caión 43.322 -8.607 

11 C3-V-D C. San Adrián 43.340 -8.831 

12 C3-VI-A F. O Roncudo, Corme 43.275 -8.991 

13 C3-VI-C F. Cabo Vilán 43.159 -9.211 

14 C3-VI-D C. Touriñán 43.055 -9.298 

15 

SA.4 

C4-VII-A C. Fisterra 42.882 -9.272 

16 C4-VII-C Pta. Remedios, Lira 42.802 -9.150 

17 C4-VII-E Tal, vértice xeodésico 42.780 -9.002 

18 C4-VIII-B Castro de Baroña 42.695 -9.033 

19 C4-VIII-C F. Corrubedo 42.576 -9.090 

20 

SA.5 

C5-IX-C Pta. Cabío 42.587 -8.921 

21 PO5-X-E Pto. de Tragove 42.518 -8.829 

22 PO5-X-C Mdor. de Raeiros 42.458 -8.889 

23 PO5-X-B Mdor. de Barreiros 42.398 -8.793 

24 PO5-XI-A Mdor. de Mogor 42.387 -8.719 

25 

SA.6 

PO6-XII-D Monte Facho 42.271 -8.862 

26 PO6-XII-C Pta. Balea 42.248 -8.788 

27 PO6-XII-B Pto. de O Con 42.271 -8.737 

28 PO6-XIII-B F. Silleiro 42.105 -8.896 

29 PO6-XIII-C Mdor. de Oia 41.988 -8.884 

30 PO6-XIII-D Mdor. de A Guarda 41,914 -8,885 
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Appendix IX. Continued. 

b) 

Observation Point Latitude Longitude 

SA. 1 
 

LU1-I-A F. Illa Pancha 43.555 -7.043 

LU1-I-D F. San Cibrán 43.700 -7.436 

LU1-II-A F. Pta. Roncadoira 43.736 -7.525 

LU1-II-B Pta. do Faro 43.712 -7.583 

SA. 2 C2-III-B Cruceiro de Teixidelo 43.711 -7.975 

C2-III-D Pta. Corveira 43.643 -8.123 

SA. 3 C3-IV-B Pto. de Sada 43.363 -8.244 

C3-IV-B Faros de Mera 43.363 -8.244 

C3-IV-D Monte San Pedro 43.376 -8.394 

C3-V-C P. Baldaio 43.304 -8.655 

C3-VI-B Laxe 43.232 -9.011 

SA. 4 C4-VII-B F. de Cee 42.916 -9.184 

C4-VII-D F. Monte Louro 42.739 -9.079 

C4-VIII-A Virxe de Loreto 42.743 -8.984 

C5-IX-A  P. Vilar 42.552 -9.028 

SA. 5 C5-IX-B Pto. de Riveira 42.560 -8.987 

C5-IX-D Cabo de Cruz 42.611 -8.887 

PO5-X-D Pta. Pateiro 42.476 -8.939 

PO5-X-A Pto. de Combarro 42.427 -8.705 

PO5-XI-B Pto. de Bueu 42.329 -8.788 

PO5-XI-BB Burato do Inferno 42.361 -8.947 

PO5-XI-C C. Udra 42.334 -8.833 

SA. 6 PO6-XII-A S. Adrián de Cobres 42.302 -8.655 

PO6-XIII-A A Bombardeira 42.122 -8.859 
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Appendix X. Hours of observation at 30 Observation Points along the Galician coast a) per year and b) per month. 

a) 

 
Sub-area 

SA.1 SA.2 SA.3 SA.4 

Observation Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Year 2003 0.52 - 1.88 1.33 1.37 0.67 0.75 0.87 1.20 1.57 1.67 1.50 1.83 2.38 2.62 2.50 0.37 2.00 2.17 

 
2004 5.50 5.27 11.38 6.17 6.62 7.67 6.63 4.05 5.17 5.83 6.75 5.62 5.52 5.55 9.18 6.58 7.07 9.07 6.90 

 
2005 5.20 5.67 6.67 6.37 6.37 5.53 5.33 5.17 7.77 7.30 7.20 5.82 5.35 6.05 7.35 6.23 6.98 8.08 7.00 

 
2006 1.00 5.08 7.75 4.95 7.05 3.50 7.00 3.67 12.48 6.40 9.13 7.63 7.22 7.67 10.37 7.50 7.93 9.98 7.63 

 
2007 7.80 10.68 7.10 6.82 7.92 6.08 11.08 0.33 8.32 5.28 8.25 5.62 6.15 5.83 11.62 6.38 6.60 11.78 18.75 

 
2008 10.35 8.13 9.38 9.07 9.07 8.87 7.70 0.00 7.52 7.50 7.62 6.40 6.50 6.50 8.17 7.67 6.98 9.98 8.67 

 
2009 8.20 8.08 8.08 8.28 8.33 8.07 7.97 4.23 10.08 8.25 7.68 6.67 6.67 6.67 7.50 7.05 7.12 7.03 8.08 

 
2010 6.67 6.83 7.85 6.50 8.48 6.67 7.50 6.67 7.08 7.72 5.08 6.33 6.75 6.17 7.00 4.67 5.75 8.67 5.83 

  2011 5.23 6.05 6.22 5.67 6.37 5.87 5.90 5.78 6.98 6.50 5.52 4.50 4.83 5.72 6.63 4.50 7.00 6.77 6.77 

 
 

Sub-area 
SA.5 SA.6 

  

Observation Point 20 21 22 23 24 25 26 27 28 29 30 TOTAL 

Year 2003 3.05 3.42 5.62 6.83 2.53 4.58 4.00 7.27 6.50 2.78 3.17 77.27 

 
2004 6.82 13.55 15.80 30.32 7.12 10.72 12.08 14.67 12.52 7.60 6.80 269.17 

 
2005 7.00 8.07 8.52 14.78 6.10 6.18 7.17 5.88 6.37 5.62 5.22 208.57 

 
2006 7.95 6.03 7.72 10.43 8.23 5.92 6.88 6.88 8.95 5.83 5.42 219.55 

 
2007 11.73 5.83 5.93 10.58 8.57 6.67 7.20 5.88 10.08 6.35 6.33 242.10 

 
2008 8.67 8.33 7.33 8.75 8.83 7.00 7.00 7.50 7.50 7.17 6.87 237.22 

 
2009 8.33 8.08 8.25 8.50 7.83 7.25 7.33 7.33 7.00 7.03 6.75 235.78 

 
2010 5.50 8.08 7.30 7.17 7.00 7.67 8.00 8.00 6.83 6.67 7.17 212.27 

  2011 6.58 6.08 6.50 5.58 6.67 6.25 6.50 5.67 7.83 8.00 7.58 189.05 
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Appendix X.  Continued. 

b) 

Sub-area SA.1 SA.2 SA.3 SA.4 

Observation Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Month Jan 3.50 3.33 2.45 4.33 5.58 4.75 4.92 2.98 4.42 4.00 4.15 3.05 2.70 2.55 4.72 4.18 4.25 5.67 5.33 

 
Feb 3.92 5.53 19.07 2.62 4.78 4.33 8.50 1.50 3.65 3.17 4.03 3.90 3.53 4.25 5.42 3.25 3.67 4.10 4.20 

 
Mar 4.28 3.67 6.42 4.63 5.42 4.92 5.00 2.17 5..03 5.12 5.48 3.65 3.28 2.72 5.78 3.68 3.72 5.75 5.18 

 
Apr 4.12 5.10 12.58 4.75 5.37 4.37 4.72 1.58 4.25 4.53 4.87 4.73 4.55 4.75 6.20 4.37 4.60 5.83 7.08 

 
May 3.57 4.08 20.97 4.25 4.58 3.92 4.47 1.97 5.13 4.82 4.42 3.53 3.78 4.33 5.67 5.15 4.92 4.20 6.22 

 
Jun 3.67 3.83 3.50 3.68 4.42 3.50 4.17 2.12 4.97 4.80 4.53 3.85 3.67 3.67 5.25 4.87 3.92 4.78 6.00 

 
Jul 4.47 4.88 1.33 4.80 4.53 4.03 4.08 2.50 8.88 5.57 4.83 4.58 5.00 5.42 5.17 3.83 4.92 8.53 8.07 

 
Aug 5.22 4.95 0.00 4.75 5.20 4.63 4.75 3.05 8.58 4.43 5.67 5.48 5.35 5.47 7.75 5.62 7.83 6.50 6.68 

 
Sep 4.10 5.12 0.00 5.40 4.67 4.78 4.92 3.28 5.80 5.10 5.62 4.20 4.42 4.30 5.15 3.45 4.00 5.47 7.03 

 
Oct 5.32 5.23 0.00 5.17 5.00 4.47 5.28 3.58 5.33 4.87 6.05 4.50 4.17 4.75 6.83 5.00 5.25 7.28 5.75 

 
Nov 4.08 5.28 0.00 5.17 5.42 4.47 4.27 2.83 5.08 4.63 3.63 4.17 5.20 4.83 6.83 4.97 4.65 5.75 3.00 

  Dec 4.23 4.78 0.00 5.60 6.60 4.75 4.80 3.20 5.47 5.32 5.62 4.43 5.17 5.50 5.67 4.72 4.08 7.50 7.25 
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Appendix X.  Continued. 

b) 

Sub-area SA.5 SA.6   

Observation Point 20 21 22 23 24 25 26 27 28 29 30 TOTAL 

Month Jan 6.68 5.72 5.05 7.10 5.00 2.58 2.03 2.25 6.20 4.10 3.53 131.75 

 
Feb 4.50 5.52 7.70 8.17 5.03 4.98 4.75 5.08 6.42 5.42 5.25 144.42 

 
Mar 6.10 5.73 7.32 7.03 5.88 6.88 7.87 9.00 8.33 5.35 5.25 138.73 

 
Apr 5.00 4.97 4.60 7.42 5.47 4.92 5.25 4.83 5.37 4.50 4.47 147.80 

 
May 4.37 5.12 5.90 6.25 5.33 3.82 6.37 4.58 6.12 5.33 4.42 163.15 

 
Jun 5.45 4.90 5.43 11.23 4.00 4.87 5.13 4.58 4.67 4.20 4.17 157.52 

 
Jul 4.20 5.35 5.15 10.77 4.37 6.68 7.10 7.07 4.90 4.23 3.75 156.78 

 
Aug 5.73 6.30 5.38 7.58 5.38 4.92 5.00 4.88 5.67 5.00 4.83 167.10 

 
Sep 6.10 7.83 7.83 13.63 6.38 7.58 7.17 10.35 7.38 5.00 5.25 190.50 

 
Oct 5.20 6.25 6.33 7.92 5.30 5.55 5.92 7.10 5.92 3.92 4.30 179.93 

 
Nov 4.73 4.82 5.60 6.07 4.98 5.78 5.75 5.77 4.92 3.83 3.83 152.23 

  Dec 7.57 4.98 6.67 9.78 5.75 3.67 3.83 3.58 7.70 6.17 6.25 159.05 
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Appendix XI. Models for the study of the covariates affecting the observer with their values of Deviation Explained (Dev. Expl.) and AIC. Covariates: height of 

the observation station in meters (Height_m), number of observers (N_Obs), optics used by the observers (Optics_N), Beaufort, North component of the 

wind (W_north), Wester component of the wind (W_East), Douglas, Visibility, Area expressed in Km2 (Area_Km2), minutes of duration of the observation 

(Obs_min), presence of bottlenose dolphins (Sight_TTR). 

Model ID Model 
Dev. 
Expl. 

AIC 

MOD_01 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) 11.6% 743.06 

MOD_02 Y ~ 1 + s(Obs_min k = 3) + s(AKm2, k=3) + s(Beaufort, k=3) + s(Sight_TTR, k=3) 11.00% 744.77 

MOD_03 Y ~ 1 + s(Obs_min k = 3) + s(AKm2, k=3) + s(Beaufort, k=3) + s(Douglas, k=3) 10.60% 749.11 

MOD_04 Y ~ 1 + s(Obs_min k = 3) + s(AKm2, k=3) + s(Beaufort, k=3) + s(Opt_n, k=3) 10.20% 750.31 

MOD_05 Y ~ 1 + s(Obs_min, k = 3) + s(AKm2, k=3) + s(Beaufort, k=3) 9.78% 752.45 

MOD_06 Y ~ 1 + s(Obs_min k = 3) + s(AKm2, k=3) + s(Beaufort, k=3) + s(Visib, k=3) 9.89% 753.56 

MOD_07 Y ~ 1 + s(Obs_min k = 3) + s(AKm2, k=3) + s(Beaufort, k=3) + s(Height_TTR, k=3) 9.79% 754.25 

MOD_08 Y ~ 1 + s(Obs_min k = 3) + s(AKm2, k=3) + s(Beaufort, k=3) + s(N_Obs, k=3) 9.79% 754.35 

MOD_09 Y ~ 1 + s(Obs_min, k = 3) + s(AKm2, k=3) + s(Sight_TTR, k=3) 9.19% 757.69 

MOD_10 Y ~ 1 + s(Obs_min, k = 3) + s(AKm2, k=3) + s(Optics, k=3) 8.57% 761.92 

MOD_11 Y ~ 1 + s(Obs_min k = 3) + s(AreaKm2, k=3) 8.17% 764.03 

MOD_12 Y~ 1 + s(Obs_min, k = 3) + s(AKm2, k=3) + s(Visib, k=3) 8.32% 764.86 

MOD_13 Y ~ 1 + s(Obs_min, k = 3) + s(AKm2, k=3) + s(Douglas, k=3) 8.45% 764.9 

MOD_14 Y ~ 1 + s(Obs_min, k = 3) + s(AKm2, k=3) + s(N_Obs) 8.21% 765.71 

MOD_15 Y ~ 1 + s(Obs_min, k = 3) + s(AKm2, k=3) + s(Hm, k=3) 8.16% 765.98 

MOD_16 Y ~ 1 + s(Obs_min k = 3) + s(Beaufort, k=3) 7.21% 770.05 

MOD_17 Y ~ 1 + s(Obs_min k = 3) + s(Optics_n, k=3) 6.00% 779.6 

MOD_18 Y ~ 1 + s(Obs_min k = 3) + s(Sight_TTR, k=3) 5.68% 782.92 

MOD_19 Y ~ 1 + s(Obs_min k = 3) 4.94% 787.03 
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Model ID Model 
Dev. 
Expl. 

AIC 

MOD_20 Y ~ 1 + s(Obs_min k = 3) + s(Douglas, k=3) 4.99% 788.58 

MOD_21 Y ~ 1 + s(Obs_min k = 3) + s(Hm, k=3) 4.96% 788.69 

MOD_22 Y ~ 1 + s(Obs_min k = 3) + s(N_Obs, k=3) 4.94% 789.01 

MOD_23 Y ~ 1 + s(Obs_min k = 3) + s(Visib, k=3) 4.94% 789.01 

MOD_24 Y ~ 1 + s(Area_Km2, k = 3) 3.13% 800.17 

MOD_25 Y ~ 1 + s(Beaufort, k = 3) 2.62% 804.04 

MOD_26 Y ~ 1 + s(Optics_N, k = 3) 1.12% 815.91 

MOD_27 Y ~ 1 + s(Sight_TTR k = 3) 0.27% 823.69 

MOD_28 Y ~ 1 + s(Douglas, k = 3) 0.08% 825.18 

MOD_29 Y ~ 1 + s(Visibility, k = 3) 0.09% 825.2 

MOD_30 Y ~ 1 + s(Height_m, k = 3) 0.03% 825.53 

MOD_31 Y ~ 1 + s(N_Obs, k = 3) 0.03% 825.7 
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Appendix XII. P-values of the models for the study of the covariates affecting the observer. Covariates: height of the observation station in meters 

(Height_m), number of observers (N_Obs), optics used by the observers (Optics_N), Beaufort, North component of the wind (W_north), Wester component 

of the wind (W_East), Douglas, Visibility, Area expressed in Km2 (Area_Km2), minutes of duration of the observation (Obs_min), presence of bottlenose 

dolphins (Sight_TTR). 

Model ID 
Covariate 

Height_m N_Obs Optics_N Beaufort W_north W_East Douglas Visibility Area_Km2 Obs_min Sight_TTR 

MOD_01 
      

< 2e-16 
***     

 
0.000271 
***   

 < 2e-16 
*** 

 < 2e-16 
*** 

 3.21e-08 
*** 

MOD_02 
      

< 2e-16 
***         

< 2e-16 
*** 

< 2e-16 
*** 

2.98e-09 
*** 

MOD_03 
      

< 2e-16 
***     

1.05e-05 
***   

< 2e-16 
*** 

< 2e-16 
***   

MOD_04 
    

2.57e-05 
*** 

1.46e-15 
***         

< 2e-16 
*** 

< 2e-16 
***   

MOD_05 
      

1.92e-15 
***         

< 2e-16 
*** 

< 2e-16 
***   

MOD_06 
      

3.29e-15 
***       

0.0371  
* 

< 2e-16 
*** 

< 2e-16 
***   

MOD_07 
0.378     

1.43e-15 
***         

< 2e-16 
*** 

< 2e-16 
***   

MOD_08 
  0.49   

3.24e-15 
***         

< 2e-16 
*** 

< 2e-16 
***   

MOD_09 
                

< 2e-16 
*** 

< 2e-16 
*** 

3.51e-08 
*** 

MOD_10 
    

3.93e-05 
***           

< 2e-16 
*** 

< 2e-16 
***   

MOD_11 
                

<2e-16 
*** 

<2e-16 
***   

MOD_12 
              

0.0173  
* 

<2e-16 
*** 

<2e-16 
***   

MOD_13 
            0.0823   

<2e-16 
*** 

<2e-16 
***   

MOD_14 
  0.22             

<2e-16 
*** 

<2e-16 
***   

MOD_15 
0.974               

<2e-16 
*** 

<2e-16 
***   

MOD_16       <2e-16           <2e-16   
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Model ID 
Covariate 

Height_m N_Obs Optics_N Beaufort W_north W_East Douglas Visibility Area_Km2 Obs_min Sight_TTR 

*** *** 

MOD_17 
    

9e-09 
***             

<2e-16 
***   

MOD_18 
                  

< 2e-16 
*** 

1.80e-06 
*** 

MOD_19 
                  

<2e-16 
***   

MOD_20 
            0.146     

<2e-16 
***   

MOD_21 
0.265                 

<2e-16 
***   

MOD_22 
  0.737               

<2e-16 
***   

MOD_23 
              0.73   

<2e-16 
***   

MOD_24 
                

<2e-16 
***     

MOD_25 
      

<2e-16 
***               

MOD_26 
    

1.27e-08 
***                 

MOD_27                     0.0034 ** 

MOD_28             0.0747         

MOD_29               0.0695       

MOD_30 0.261                     

MOD_31   0.305                   
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Appendix XIII. Models for the study of the covariates affecting the observer plus spatiotemporal covariates with their values of Deviation Explained (Dev. 

Expl.) and AIC. Covariates: station of observation (PC), day of the year (Day_of_Year), year as smoother, year as factor (as.facto(Year), time of the day when 

the observation starts (START_OBS), Beaufort, Douglas, area surveyed by observers in Km2 (Area_Km2), minutes of observation (Obs_min), presence of 

bottlenose dolphins (Sight_TTR). 

Model ID Model Dev. Expl. AIC 

MOD_01 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(YEAR, k = 4) + s(START_OBS, k = 4) + s(PC) 17.2% 709.11 

MOD_02 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PC) + s(YEAR, k = 4) + s(START_OBS, k = 4) 17.3% 710.12 

MOD_03 Y ~ 1 + as.factor(YEAR) + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PC) + s(START_OBS, k = 4) + s(Day_of_Year) 19.2% 710.9 

MOD_04 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(YEAR, k = 4) + s(START_OBS, k = 4) + s(Day_of_Year) + s(PC) 17.3% 712.06 

MOD_05 Y ~ 1 + as.factor(YEAR) + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PC) 18.5% 712.79 

MOD_06 Y ~ 1 + as.factor(YEAR) + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PC) 18.5% 712.79 

MOD_07 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PC) + (YEAR, k = 4) 16.6% 714.05 

MOD_08 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(YEAR, k = 4) + s(Day_of_Year) + s(PC) 16.7% 715.69 

MOD_09 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PC) + s(START_OBS, k = 4) 16.2% 717.34 

MOD_10 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PC) + s(Day_of_Year) 15.8% 721.57 

MOD_11 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(YEAR, k = 4) + s(START_OBS, k = 4) 13.2% 733.72 

MOD_12 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(YEAR, k = 4) + s(START_OBS, k = 4) + s(Day_of_Year) 13.3% 735.42 

MOD_13 Y ~ 1 + as.factor(YEAR) + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) 14.3% 736.85 

MOD_14 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(YEAR, k = 4) + s(Day_of_Year) 12.7% 739.36 

MOD_15 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(START_OBS, k = 4) 12.2% 739.62 

MOD_16 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(START_OBS, k = 4) + s(Day_of_Year) 12.4% 741.12 

MOD_17 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(Day_of_Year) 11.9% 743.89 
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Appendix XIV. P-values  of the models for the study of the covariates affecting the observer plus spatiotemporal covariates. P-values: 0 '***' 0.001 '**' 0.01 

'*' 0.05 '.' 0.1 ' ' 1. Covariates: station of observation (PC), day of the year (Day_of_Year), year as smoother, year as factor (as.facto(Year), time of the day 

when the observation starts (START_OBS), Beaufort, Douglas, area surveyed by observers in Km2 (Area_Km2), minutes of observation (Obs_min), presence 

of bottlenose dolphins (Sight_TTR). 

Model ID 
Covariates 

PC Day_of_Year Year 
as.factor 

(Year) 
START_OBS Beaufort Douglas Area_Km2 Obs_min Sight_TTR 

MOD_01 
< 2e-16 
*** 

  
1.40e-11 
*** 

  
9.16e-09 
*** 

< 2e-16 
*** 

  
< 2e-16 
*** 

< 2e-16 
*** 

2.43e-07 
*** 

MOD_02 
< 2e-16 
*** 

  
1.41e-12 
*** 

  
2.12e-08 
*** 

< 2e-16 
*** 

 0.0289  
* 

< 2e-16 
*** 

< 2e-16 
*** 

1.93e-07 
*** 

MOD_03 
< 2e-16 
*** 

0.4259   1 
2.26e-08 
*** 

< 2e-16 
*** 

 0.0745 
 . 

5.75e-12 
*** 

 < 2e-16 
*** 

3.87e-08 
*** 

MOD_04 
< 2e-16 
*** 

 0.5900 
1.53e-12 
*** 

  
2.55e-08 
*** 

< 2e-16 
*** 

 0.0344  
* 

< 2e-16 
*** 

< 2e-16 
*** 

1.97e-07 
*** 

MOD_05 
< 2e-16 
*** 

        
< 2e-16 
*** 

0.0302  
*  

3.55e-11 
*** 

 < 2e-16 
*** 

4.13e-08 
*** 

MOD_06 
< 2e-16 
*** 

    1   
< 2e-16 
*** 

0.0302 
 *  

3.55e-11 
*** 

< 2e-16 
*** 

4.13e-08 
*** 

MOD_07 
< 2e-16 
*** 

  
2.36e-11 
*** 

    
 < 2e-16 
*** 

0.0118  
* 

4.76e-15 
*** 

< 2e-16 
*** 

2.04e-07 
*** 

MOD_08 
 < 2e-16 
*** 

0.2512  
3.66e-11 
*** 

    
 < 2e-16 
*** 

0.0283 
 *  

3.96e-15 
*** 

< 2e-16 
*** 

1.68e-07 
*** 

MOD_09 
< 2e-16 
*** 

      
3.63e-07 
*** 

< 2e-16 
*** 

 0.94 
< 2e-16 
*** 

< 2e-16 
*** 

7.48e-07 
*** 

MOD_10 
 < 2e-16 
*** 

 0.0899 
 . 

      
< 2e-16 
*** 

0.9670 
 < 2e-16 
*** 

< 2e-16 
*** 

6.4e-07 
*** 

MOD_11     
1.00e-10 
*** 

  
1.21e-08 
*** 

< 2e-16 
*** 

0.00758 
**  

 < 2e-16 
*** 

 < 2e-16 
*** 

 6.25e-09 
*** 

MOD_12   0.21153  
1.29e-10 
*** 

  
2.46e-08 
*** 

 < 2e-16 
*** 

0.00732 
**  

 < 2e-16 
*** 

 < 2e-16 
*** 

7.48e-09 
*** 

MOD_13       1   
< 2e-16 
*** 

0.0149  
*  

< 2e-16 
*** 

< 2e-16 
*** 

4.76e-10 
*** 

MOD_14   
0.04797  
* 

2.77e-09 
*** 

    
< 2e-16 
*** 

 0.00698 
** 

< 2e-16 
*** 

 < 2e-16 
*** 

4.91e-09 
*** 

MOD_15         
1.97e-07 
*** 

 < 2e-16 
*** 

0.000196 
*** 

 < 2e-16 
*** 

 < 2e-16 
*** 

5.09e-08 
*** 

MOD_16   0.122      
5.51e-07 
*** 

 < 2e-16 
*** 

8.92e-05 
*** 

 < 2e-16 
*** 

 < 2e-16 
*** 

6.04e-08 
*** 

MOD_17   
 0.0197 
 *   

      
 < 2e-16 
*** 

7.38e-05 
*** 

 < 2e-16 
*** 

 < 2e-16 
*** 

3.76e-08 
*** 
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Appendix XV. Models for the study of the covariates affecting the observer plus environmental covariates with their values of Deviation Explained (Dev. 

Expl.) and AIC. 

Model_ID Model Dev. Expl. AIC 

MOD_001 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(D_200m, k=4)  

22.70% 541.092 

MOD_002 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(ASP_cos, k =4) 

23.70% 541.183 

MOD_003 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4) 

22.90% 541.228 

MOD_004 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(ASP_scos, K=4) 

23.30% 541.49 

MOD_005 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(ASP_STD, K=4) 

22.90% 541.511 

MOD_006 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(ASP_STD, k =4) 

23.20% 541.623 

MOD_007 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(Start_Obs, K=4) 

22.80% 541.943 

MOD_008 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(SST_STD, K=4) 

22.80% 542.086 

MOD_009 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(Start_Obs, k =4) 

23.10% 542.104 

MOD_010 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(SST_STD, k =4) 

23.10% 542.265 

MOD_011 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4) 22.10% 542.669 

MOD_012 
Y3 ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(ZEU_STD, K=4) 

22.70% 542.809 

MOD_013 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(ZEU_STD, k =4) 

23.00% 542.846 

MOD_014 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(PAR_STD, K=4) 

22.70% 542.927 

MOD_015 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(SST_MEAN, K=4) 

22.70% 542.965 

MOD_016 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(CHL_MEAN, K=4) 

22.70% 543.014 

MOD_017 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ASP_sin, K=4) 

22.40% 543.027 

MOD_018 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 22.70% 543.028 
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Model_ID Model Dev. Expl. AIC 

s(ZEU_MEAN, K=4) + s(ASP_sin, K=4) 

MOD_019 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(PAR_MEAN, K=4) 

22.70% 543.054 

MOD_020 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(PAR_STD, k =4) 

23.00% 543.069 

MOD_021 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_MEAN, K=4) + s(CHL_STD, K=4) 

22.70% 543.078 

MOD_022 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(SST_MEAN, k =4) 

23.00% 543.117 

MOD_023 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(PAR_MEAN, k =4) 

23.00% 543.119 

MOD_024 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(CHL_MEAN, k =4) 

23.00% 543.155 

MOD_025 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(POP_sin, k =4) 

23.00% 543.172 

MOD_026 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(POP_STD, k =4)+ s(CHL_STD, k =4) 

23.00% 543.197 

MOD_027 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(Start_Obs, K=4) 

22.30% 543.218 

MOD_028 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ASP_cos, K=4) 

22.70% 543.264 

MOD_029 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ZEU_STD, K=4) 

22.30% 543.274 

MOD_030 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(SST_STD, K=4) 

22.20% 543.867 

MOD_031 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(SST_MEAN, K=4) 

22.20% 544.034 

MOD_032 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(CHL_MEAN, K=4) 

22.20% 544.039 

MOD_033 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(PAR_STD, K=4) 

22.20% 544.288 

MOD_034 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(CHL_STD, K=4) 

22.20% 544.334 

MOD_035 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(PAR_MEAN, K=4) 

22.10% 544.556 

MOD_036 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SLO_MEAN, K=4)+ 
s(ASP_STD, K=4) 

22.10% 544.636 

MOD_037 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(ASP_cos, k =4) 

22.80% 545.341 

MOD_038 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(ASP_cos, K=4) 22.10% 545.391 
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Model_ID Model Dev. Expl. AIC 

MOD_039 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(ZEU_MEAN, K=4) 21.70% 545.733 

MOD_040 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) 21.30% 546.229 

MOD_041 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4)  

21.50% 546.393 

MOD_042 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(POP_STD, k=4)  

21.80% 546.501 

MOD_043 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(ASP_STD, k=4)  

21.80% 546.776 

MOD_044 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(Start_obs, K=4) 21.50% 546.776 

MOD_045 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(ZEU_STD, K=4) 21.50% 547.145 

MOD_046 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(ASP_cos, k=4)  

22.10% 547.433 

MOD_047 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(Start_Obs, k=4)  

21.70% 547.464 

MOD_048 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(CHL_MEAN, K=4) 21.40% 547.597 

MOD_049 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(SST_STD, k=4)  

21.70% 547.633 

MOD_050 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SST_MEAN, K=4) 21.40% 547.694 

MOD_051 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(CHL_STD, K=4) 21.30% 547.879 

MOD_052 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(SST_STD, K=4) 21.30% 547.922 

MOD_053 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(ASP_STD, K=4) 21.40% 547.977 

MOD_054 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(DEP_STD, k=4) 

22.00% 548.023 

MOD_055 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(ZEU_STD, k=4)  

21.60% 548.075 

MOD_056 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(PAR_MEAN, K=4) 21.30% 548.081 

MOD_057 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(PAR_STD, k=4)  

21.60% 548.118 

MOD_058 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(PAR_STD, K=4) 21.30% 548.177 

MOD_059 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(SST_MEAN, k=4)  

21.60% 548.18 

MOD_060 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Dist_200m, K=4) + s(ASP_sin, K=4) 21.30% 548.223 
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Model_ID Model Dev. Expl. AIC 

MOD_061 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(ASP_sin, k=4)  

21.60% 548.322 

MOD_062 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(PAR_MEAN, k=4)  

21.60% 548.323 

MOD_063 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(CHL_MEAN, k=4)  

21.60% 548.357 

MOD_064 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(DEP_STD, k=4) + 
s(POP_STD, k=4) + s(CHL_STD, k=4)  

21.50% 548.392 

MOD_065 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(ASP_ASP, k =4) 

22.30% 548.417 

MOD_066 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) 

21.50% 548.601 

MOD_067 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) 

21.70% 548.852 

MOD_068 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(DEP_STD, k=4) 

21.60% 548.903 

MOD_069 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(SST_STD, k =4) 

21.60% 549.608 

MOD_070 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(Start_obs, k =4) 

21.60% 549.874 

MOD_071 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(ASP_sin, k =4) 

21.60% 550.013 

MOD_072 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(PAR_STD, k =4) 

21.60% 550.047 

MOD_073 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(ZEU_STD, k =4) 

21.80% 550.155 

MOD_074 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(POP_STD, k =4) 

21.80% 550.159 

MOD_075 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(ZEU_STD, k =4) 

21.60% 550.177 

MOD_076 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(SST_STD, k =4) 

21.80% 550.223 

MOD_077 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(ASP_STD, k =4) 

21.70% 550.326 

MOD_078 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(PAR_MEAN, k =4) 

21.60% 550.355 

MOD_079 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(Start_Obs, k =4) 

21.80% 550.446 

MOD_080 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(CHL_MEAN, k =4) 

21.50% 550.46 

MOD_081 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 21.50% 550.476 
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s(DEP_STD, k =4) + s(SST_MEAN, k =4) 

MOD_082 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(PAR_MEAN, k =4) 

21.90% 550.492 

MOD_083 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(DEP_STD, k =4) + s(CHL_MEAN, k =4) 

21.50% 550.571 

MOD_084 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(ASP_cos, k=4)  

21.80% 550.601 

MOD_085 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(PAR_STD, k =4) 

21.80% 550.602 

MOD_086 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(SST_MEAN, k =4) 

21.70% 550.659 

MOD_087 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(CHL_MEAN, k =4) 

21.70% 550.729 

MOD_088 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(ASP_sin, k =4) 

21.70% 550.74 

MOD_089 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(POP_STD, k =4) 

20.90% 550.799 

MOD_090 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_cos, k =4) + s(CHL_STD, k =4) 

21.70% 550.814 

MOD_091 Y A~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) 20.50% 550.929 

MOD_092 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_STD, k =4) 

21.00% 551.93 

MOD_093 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(ASP_sin, k=4) 

21.20% 552.12 

MOD_094 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(SST.STD, k =4) 

20.70% 552.132 

MOD_095 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(ZEU_STD, k=4) 

21.20% 552.205 

MOD_096 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(D_200, k=4) 

20.60% 552.255 

MOD_097 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +  s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(DEP_STD, k=4) 20.30% 552.344 

MOD_098 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(ZEU_MEAN, K=4) 20.40% 552.372 

MOD_099 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(Start_Obs, k =4) 

20.60% 552.376 

MOD_100 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +  s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(DEP_STD, k=4) 20.60% 552.462 

MOD_101 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ZEU_STD, k =4) 

20.60% 552.517 
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MOD_102 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) 22.70% 552.542 

MOD_103 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(PAR_MEAN, k =4) 

23.70% 552.617 

MOD_104 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(SST.MEAN, k =4) 

20.30% 552.671 

MOD_105 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) 

20.70% 552.681 

MOD_106 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(ASP_STD, k=4)  

20.60% 552.753 

MOD_107 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(PAR_STD, k =4) 

20.80% 552.767 

MOD_108 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(CHL.MEAN, k =4) 

21.30% 552.833 

MOD_109 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(ASP_sin, k =4) 

20.60% 552.839 

MOD_110 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, k=4) + s(D_200, k=4) + 
s(CHL.STD, k =4) 

20.60% 552.904 

MOD_111 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) 20.50% 553.043 

MOD_112 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(POP_STD, k=4) 

20.50% 553.226 

MOD_113 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(ZEU_STDN, k=4) 

20.20% 553.305 

MOD_114 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(Start_Obs, K=4) 21.00% 553.321 

MOD_115 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(ZEU_STD, K=4) 20.50% 553.477 

MOD_116 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(ASP_sin, k=4) 

20.20% 553.513 

MOD_117 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(ASP_cos, K=4) 20.20% 553.616 

MOD_118 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(CHL_MEAN, k=4) 

20.40% 553.655 

MOD_119 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(SST_MEAN, k=4) 

20.10% 553.69 

MOD_120 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(DEP_STD, k=4) 

21.00% 553.7015 

MOD_121 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(CHL_MEAN, K=4) 21.00% 553.769 

MOD_122 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(SST_MEAN, K=4) 20.70% 553.865 

MOD_123 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 20.10% 553.907 
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k=4) + s(DEP_STD, k=4) 

MOD_124 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) 

20.10% 553.985 

MOD_125 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(ASP_STD, K=4) 20.70% 553.991 

MOD_126 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(SST_MEAN, k=4) 

20.90% 553.992 

MOD_127 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(Start_Obs, k=4) 

20.20% 554.012 

MOD_128 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(CHL_STD, K=4) 20.40% 554.023 

MOD_129 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(PAR_STD, k=4) 

20.90% 554.088 

MOD_130 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(Start_Obs, k=4) 

20.10% 554.117 

MOD_131 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(PAR_MEAN, K=4) 20.90% 554.19 

MOD_132 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(SST_STD, k=4)  

20.40% 554.219 

MOD_133 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(ASP_STD, k=4) 

20.10% 554.222 

MOD_134 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(PAR_MEAN, k=4) 

20.60% 554.224 

MOD_135 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(CHL_STD, k=4) 

21.00% 554.236 

MOD_136 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_cos, k=4) + s(SST_STD, k=4) 

20.90% 554.258 

MOD_137 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(PAR_STD, k=4)  

20.90% 554.297 

MOD_138 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(SST_STD, K=4) 20.90% 554.307 

MOD_139 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(DOUGLAS, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) 20.60% 554.328 

MOD_140 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(CHL_MEAN, k=4) 

20.00% 554.361 

MOD_141 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(ASP_sin, k=4)  

20.00% 554.367 

MOD_142 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(PAR_STD, K=4) 20.30% 554.394 

MOD_143 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(Start_Obs, k=4)  

20.60% 554.406 

MOD_144 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) 20.00% 554.416 
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MOD_145 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(POP_STD, K=4) + s(ASP_sin, K=4) 20.60% 554.478 

MOD_146 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(ZEU_STD, k=4)  

20.30% 554.493 

MOD_147 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(SST_STD, k=4) 

20.00% 554.581 

MOD_148 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(PAR_MEAN, k=4) 

20.60% 554.637 

MOD_149 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(PAR_MEAN, k=4)  

20.30% 554.723 

MOD_150 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(SST_MEAN, k=4)  

20.30% 554.745 

MOD_151 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(CHL_STD, k=4) 

20.60% 554.747 

MOD_152 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(POP_STD, k=4) 

20.50% 554.757 

MOD_153 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(ASP_STD, k=4) 

20.30% 554.869 

MOD_154 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(CHL_MEAN, k=4)  

20.30% 554.892 

MOD_155 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(ASP_cos, k=4) 

20.30% 554.892 

MOD_156 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + s(POP_STD, k=4) + 
s(PAR_STD, k=4) 

20.50% 554.898 

MOD_157 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(DEP_STD, k=4) + s(CHL_STD, k=4)  

20.80% 554.966 

MOD_158 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_sin, k=4) 

20.20% 555.403 

MOD_159 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(Dist_200m, K=4) 20.50% 555.533 

MOD_160 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) 

20.10% 556.268 

MOD_161 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(POP_STD, k=4) 

20.10% 556.438 

MOD_162 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ZEU_STD, k=4) 

19.70% 556.604 

MOD_163 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(CHL_MEAN, k=4) 

20.00% 556.791 

MOD_164 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) 20.00% 556.798 

MOD_165 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(ASPSTD, k=4) 

20.00% 556.958 
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MOD_166 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(DEP_STD, k=4) 19.60% 557.448 

MOD_167 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(SST_STD, k=4) 

20.10% 557.773 

MOD_168 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(ZEU_STD, k=4) 

19.80% 557.888 

MOD_169 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(SST_MEAN, k=4) 

19.80% 557.889 

MOD_170 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(Start_Obs, k=4) 

19.80% 557.947 

MOD_171 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(Start_Obs, k=4) 

19.80% 557.953 

MOD_172 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(CHL_STD, k=4) 

19.80% 557.958 

MOD_173 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(PAR_MEAN, k=4) 

19.80% 558.063 

MOD_174 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(SST_MEAN, k=4) 

19.80% 558.076 

MOD_175 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(ASP_sin, k=4) 

19.80% 558.1 

MOD_176 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(PAR_STD, k=4) 

19.80% 558.157 

MOD_177 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(CHL_STD, k=4) 

19.70% 558.259 

MOD_178 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_MEAN, 
k=4) + s(CHL_MEAN, k=4) 

19.70% 558.265 

MOD_179 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ASP_cos, K=4) 19.70% 558.28 

MOD_180 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ASP_cos, k=4) 19.70% 558.317 

MOD_181 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(SST_STD, k=4) 

20.20% 558.342 

MOD_182 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(PAR_STD, k=4) 

19.90% 558.459 

MOD_183 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(PAR_MEAN, k=4) 

19.70% 558.478 

MOD_184 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ZEU_MEAN, K=4) 19.70% 558.483 

MOD_185 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(D_200m, k=4) + 
s(ASP_STD, k=4) 

19.70% 558.622 

MOD_186 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(POP_STD, k=4) 19.70% 558.818 
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MOD_187 Y~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ASP_sin, k=4) 19.80% 559.125 

MOD_188 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ASP_STD, K=4) 19.30% 560.191 

MOD_189 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ZEU_STD, k=4) 19.30% 560.23 

MOD_190 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(CHL_MEAN, 
k=4) 

19.00% 560.299 

MOD_191 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ASP_STD, K=4) 19.10% 560.353 

MOD_192 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) 19.20% 560.355 

MOD_193 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) 19.30% 560.516 

MOD_194 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ZEU_STD, K=4) 18.80% 560.926 

MOD_195 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(CHL_MEAN, K=4) 19.10% 561.125 

MOD_196 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(SST_MEAN, 
k=4) 

19.30% 561.313 

MOD_197 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(CHL_STD, k=4) 19.30% 561.391 

MOD_198 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(CHL_STD, K=4) 19.00% 561.655 

MOD_199 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ASP_sin, K=4) 18.90% 561.676 

MOD_200 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(DOUGLAS, k = 3) +  s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ASP_STD, K=4) 19.20% 561.692 

MOD_201 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(Start_Obs, K=4) 19.20% 561.718 

MOD_202 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(Start_Obs, k=4) 19.10% 561.745 

MOD_203 
Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(PAR_MEAN, 
k=4) 

19.20% 561.893 

MOD_204 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(ASP_STD, K=4) 18.90% 561.921 

MOD_205 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(PAR_STD, k=4) 18.90% 561.961 

MOD_206 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(SST_MEAN, K=4) 19.30% 561.965 

MOD_207 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(SST_STD, k=4) 18.90% 562.042 

MOD_208 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SLO_MEAN, K=4) + s(ASP_STD, k=4) 19.20% 562.144 

MOD_209 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(PAR_STD, K=4) 18.80% 562.211 

MOD_210 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(PAR_MEAN, K=4) 18.90% 562.23 
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MOD_211 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(DEP_STD, K=4) + s(SST_STD, K=4) 19.10% 562.442 

MOD_212 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(asp_STD, K=4) 19.10% 580.028 

MOD_213 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(ZEU_MEAN, K=4) 19.10% 582.745 

MOD_214 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(pop_STD, K=4) 16.20% 584.316 

MOD_215 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(Dist_200, K=4) 15.40% 587.562 

MOD_216 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(CHL_MEAN, K=4) 15.70% 587.793 

MOD_217 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(ZEU_STD, K=4) 14.80% 589.859 

MOD_218 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) 14.60% 590.977 

MOD_219 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(CHL_STD, K=4) 14.30% 591.119 

MOD_220 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(Asp_COS, K=4) 13.90% 591.268 

MOD_221 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(Start_Obs, K=4) 14.10% 591.622 

MOD_222 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SST_MEAN, K=4) 14.10% 591.709 

MOD_223 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(PAR_MEAN, K=4) 14.10% 591.918 

MOD_224 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(ASP_sin, K=4) 14.00% 592.288 

MOD_225 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(SST_STD, K=4) 14.00% 592.29 

MOD_226 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(W_Northing, k = 4) + s(PAR_STD, K=4) 14.10% 592.298 

MOD_227 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(W_Northing, k = 4) 14.00% 594.492 

MOD_228 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(POP_STD, K=4) 14.10% 683.777 

MOD_229 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(DIST_200m, K=4) 12.80% 683.888 

MOD_230 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(Start_Obs, K=4) 19.60% 684.95 

MOD_231 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(PAR_STD, K=4) 19.60% 685.386 

MOD_232 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(ZEU_MEAN, K=4) 19.50% 686.007 

MOD_233 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(ASP_STD, K=4) 19.70% 686.434 

MOD_234 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(SLO_MEAN, K=4) 19.30% 686.719 
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MOD_235 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) 19.40% 686.72 

MOD_236 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(CHL_MEAN, K=4) 19.00% 686.933 

MOD_237 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DEP_STD, k = 4) 19.00% 687.375 

MOD_238 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(ASP_cos, K=4) 19.20% 687.669 

MOD_239 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(ZEU_STD, K=4) 18.70% 687.907 

MOD_240 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(PAR_MEAN, K=4) 19.50% 687.983 

MOD_241 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(CHL_STD, K=4) 19.10% 688.027 

MOD_242 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(SST_MEAN, K=4) 19.10% 688.237 

MOD_243 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(ASP_sin, K=4) 19.10% 688.531 

MOD_244 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DEP_STD, k = 4) + s(SST_STD, K=4) 19.00% 688.562 

MOD_245 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(SLO_MEAN, k = 4) 19.00% 694.323 

MOD_246 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(SLO_MEAN, k = 4) 19.00% 694.574 

MOD_247 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +  s(ASP_STD, k = 4) 17.50% 717.863 

MOD_248 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(ASP_STD, k = 4) 17.70% 719.866 

MOD_249 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(POP_STD, k = 4) 14.80% 731.567 

MOD_250 Y~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +  s(ZEU_MEAN, k = 4) 14.80% 732.017 

MOD_251 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(POP_STD, k = 4) 13.30% 732.788 

MOD_252 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(ZEU_MEAN, k = 4) 12.90% 733.06 

MOD_253 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3)+ s(CHL_MEAN, k = 4) 13.50% 735.438 

MOD_254 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(PAR_STD, k = 4) 13.10% 735.793 

MOD_255 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PAR_STD, k = 4) 12.30% 736.045 

MOD_256 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(CHL_MEAN, k = 4) 12.70% 736.281 

MOD_257 Y~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(ASP_COS, k = 4) 13.00% 738.585 

MOD_258 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(ASP_COS, k = 4) 12.60% 739.256 
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MOD_259 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(START_OBS, k = 4) 12.00% 739.617 

MOD_260 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(ASP_SIN, k = 4) 12.30% 740.113 

MOD_261 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(ASP_SIN, k = 4) 12.20% 740.935 

MOD_262 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(START_OBS, k = 4) 12.10% 741.401 

MOD_263 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(ZEU_STD, k = 4) 12.30% 741.779 

MOD_264 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(DIST_200, k = 4) 11.60% 741.954 

MOD_265 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(PAR_MEAN, k = 4) 12.00% 742.77 

MOD_266 Y~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +s(ZEU_STD, k = 4) 12.00% 742.799 

MOD_267 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(CHL_STD, k = 4) 11.90% 742.829 

MOD_268 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +  s(CHL_STD, k = 4) 11.40% 743.35 

MOD_269 Y~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +  s(DIST_200, k = 4) 11.80% 743.594 

MOD_270 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(SST_MEAN, k = 4) 11.40% 743.733 

MOD_271 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(DOUGLAS, k = 3) + s(SST_STD, 4) 11.40% 743.886 

MOD_272 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(SST_STD, 4) 11.70% 744.558 

MOD_273 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) +  s(PAR_MEAN, k = 4) 11.70% 745.144 

MOD_274 Y ~ 1 + s(OBS_min, k = 3) + s(AREA_km2, k = 3) + s(BEAUFORT, k = 3) + s(Sighting_TTR, k = 3) + s(SST_MEAN, k = 4) 11.20% 745.956 
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Appendix XVI. P-values  of the models for the study of the covariates affecting the observer plus environmental covariates. P-values: 0 '***' 0.001 '**' 0.01 

'*' 0.05 '.' 0.1 ' ' 1. Covariates: minutes of observation (Obs_min), area surveyed by observers in Km2 (Area_Km2), Beaufort, presence of bottlenose dolphins 

(Sight_TTR), Douglas, sea surface temperature (SST), chlorophyll concentration (CHL), euphotic depth (ZEU), photosynthetically active radiation (PAR), depth 

(DEP), seabed slope (SLO), seabed aspect (ASP_sin, ASP_cos), and their standard deviations (SST-STD, CHL-STD, ZEU-STD, PAR-STD, DEP-STD, SLO-STD, ASP-

STD), standar desviation of the human population (POP_STD), distance from the OP to the 200m isobaths (Dist_200m), Northing component of the wind 

(W_north). 

Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_001 4.63e-06 
*** 

0.000870 
*** 

0.000218 
***             

0.066090 
.         

0.021609 
*   

0.012757 
*         

0.005106 
**  

0.009024 
**  

0.046065 
*     

MOD_002 1.52e-06 
*** 

0.000883 
*** 

0.000883 
*** 0.164714               

0.054429 
.       

0.023487 
* 

0.030881 
*   0.137651   

0.017177 
* 

0.007172 
** 

0.045971 
*   

MOD_003 2.12e-06 
*** 

0.000716 
*** 

0.000215 
*** 0.194147           

0.066302 
.       

0.025780 
* 

0.013772 
*       

0.005254 
** 

0.009198 
** 

0.048966 
*     

MOD_004 3.74e-06 
*** 

0.001096 
**  

0.000149 
***             

0.059117 
.       

0.017541 
* 

0.037047 
*     0.177287   

0.013751 
*   

0.007002 
**  

0.044283 
*   

MOD_005 6.36e-06 
*** 

0.001269 
**  

0.000211 
***             

0.023074 
*       

0.027819 
* 

0.015665 
*     0.192513 

0.005674 
**  

0.009265 
**  

0.052005 
.     

MOD_006 3.03e-06 
*** 

0.001046 
**  

0.000202 
*** 0.190672           

0.015820 
*       

0.024959 
* 

0.022817 
*     0.190708     

0.005434 
**  

0.009180 
** 

0.054751 
.    

MOD_007 2.52e-06 
*** 

0.000755 
*** 

0.000211 
***             

0.079155 
.       

0.021426 
*   

0.014339 
*         

0.004313 
**  

0.008059 
** 

0.044951 
* 0.314201 

MOD_008 
4.1e-06 
*** 

0.001152 
** 

0.000231 
***       0.306522     

0.058009 
.       

0.022070 
* 

0.009585 
**       

0.005215 
** 

0.007951 
** 

0.048989 
*   

MOD_009 1.16e-06 
*** 

0.000626 
*** 

0.000207 
*** 0.196782               

0.078820 
.         

0.022813 
*   

0.013677 
*       

0.004416 
** 

0.008072 
**  

0.048320 
* 0.320950 

MOD_010 1.92e-06 
*** 

0.000944 
*** 

0.000231 
*** 0.199213     0.318916         

0.058276 
.       

0.021697 
* 

0.009205 
**       

0.005361 
**  

0.008047 
** 

0.051999 
.   

MOD_011 1.4e-05 
*** 

0.000557 
*** 

0.000189 
***                     

0.025297 
* 

0.021296 
*       

0.002132 
** 

0.010662 
* 

0.080955 
.   

MOD_012 3.96e-06 
*** 

0.000845 
*** 

0.000223 
***             0.129799 0.612760     

0.023419 
* 

0.012664 
*       

0.005205 
**  

0.009184 
**  

0.044929 
*   

MOD_013 1.76e-06 
*** 

0.000689 
*** 

0.000220 
*** 0.185309               0.137274 0.555628     

0.025359 
* 

0.012386 
*       

0.005357 
** 

0.009312 
** 

0.046892 
*   

MOD_014 5.5e-06 
*** 

0.000812 
*** 

0.000224 
***             

0.075078 
.     0.727958 

0.021383 
* 

0.012187 
*       

0.005961 
**  

0.009470 
** 

0.045084 
*     

MOD_015 5.6e-06 
*** 

0.000903 
*** 

0.000254 
***     0.694198       

0.095170 
.       

0.026027 
* 

0.013140 
*       

0.005105 
**  

0.009456 
**  

0.049765 
*   

MOD_016 4.5e-06 
*** 

0.000852 
*** 

0.000227 
***         0.750830   

0.085392 
.       

0.026485 
* 

0.012971 
*       

0.005260 
** 

0.008811 
** 

0.047329 
*   

MOD_017 8.63e-06 
*** 

0.000946 
*** 

0.000191 
***                     

0.022809 
*   

0.010553 
*   0.223496     

0.005145 
**  

0.009986 
**  

0.062511 
.     
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_018 4.97e-06 
*** 

0.000890 
*** 

0.000217 
***             0.174600       

0.023612 
* 

0.021801 
* 0.827261     

0.006004 
**  

0.009045 
** 

0.045603 
*    

MOD_019 4.96e-06 
*** 

0.000901 
*** 

0.000225 
***             

0.069390 
.   0.905591   

0.022335 
* 

0.013032 
*       

0.005227 
**  

0.009174 
** 

0.048097 
*   

MOD_020 2.53e-06 
*** 

0.000671 
*** 

0.000221 
*** 0.194727           

0.075150 
.     0.734267     

0.025449 
*   

0.012190 
*       

0.006084 
**  

0.009615 
**  

0.047907 
*   

MOD_021 4.56e-06 
*** 

0.000879 
*** 

0.000220 
***           0.917335 

0.079599 
.       

0.024231 
* 

0.013331 
*        

0.005119 
**  

0.009023 
**  

0.046166 
*   

MOD_022 2.58e-06 
*** 

0.000732 
*** 

0.000250 
*** 0.196349       0.717005           

0.093872 
.         

0.028140 
*   

0.012598 
*         

0.005273 
**  

0.009621 
**  

0.052608 
.     

MOD_023 2.21e-06 
*** 

0.000751 
*** 

0.000226 
*** 0.189091           

0.068494 
.   0.850499   

0.026855 
* 

0.012538 
*       

0.005441 
** 

0.009385 
**  

0.052019 
.   

MOD_024 2.06e-06 
*** 

0.000702 
*** 

0.000224 
*** 0.194803       0.759695   

0.086951 
.       

0.029708 
* 

0.013113 
*       

0.005406 
** 

0.008938 
** 

0.050119 
.   

MOD_025 2.24e-06 
*** 

0.000741 
*** 

0.000214 
*** 0.194853           0.170902       

0.009203 
**  

0.022567 
*   0.842974     

0.006233 
**  

0.023189 
* 

0.048420 
*   

MOD_026 2.07e-06 
*** 

0.000717 
*** 

0.000217 
*** 0.192738         0.875744 

0.076560 
.       

0.026632 
* 

0.013060 
*       

0.005253 
** 

0.009034 
** 

0.048963 
*   

MOD_027 6.74e-06 
*** 

0.000474 
*** 

0.000189 
***                     

0.022788 
*   

0.022002 
*       

0.001876 
**  

0.009232 
**  

0.076334 
. 0.257383 

MOD_028 9.37e-06 
*** 

0.001554 
**  

0.000139 
***                     

0.018090 
* 

0.057512 
.    0.453770   

0.007915 
**  

0.008794 
**  

0.089509 
.     

MOD_029 7.82e-06 
*** 

0.000476 
*** 

0.000212 
***               0.257240     

0.026495 
* 

0.018444 
*       

0.002623 
**  

0.010518 
* 

0.067565 
.   

MOD_030 1.29e-05 
*** 

0.000706 
*** 

0.000204 
***       0.361402             

0.026518 
* 

0.017038 
*       

0.002109 
**  

0.009645 
** 

0.085498 
.   

MOD_031 1.55e-05 
*** 

0.000559 
*** 

0.000257 
***     0.422073               

0.028071 
* 

0.020697 
*       

0.002295 
**  

0.011348 
* 

0.085378 
.   

MOD_032 1.17e-05 
*** 

0.000565 
*** 

0.000180 
***         0.495060           

0.025203 
*  

0.022328 
*       

0.002445 
**  

0.010900 
* 

0.069505 
.   

MOD_033 1.67e-05 
*** 

0.000505 
*** 

0.000199 
***                   0.577983 

0.024457 
*   

0.018464 
*       

0.002784 
**  

0.011350 
* 

0.077520 
.   

MOD_034 1.36e-05 
*** 

0.000583 
*** 

0.000182 
***           0.598533             

0.027156 
*   

0.021657 
*         

0.002307 
**  

0.011122 
*   

0.075456 
.   

MOD_035 1.55e-05 
*** 

0.000555 
*** 

0.000194 
***                 0.737439   

0.026938 
* 

0.022082 
*       

0.002260 
**  

0.011468 
* 

0.084193 
.   

MOD_036 1.42e-05 
*** 

0.001533 
**  

0.000187 
***                     

0.025925 
* 

0.023715 
*     0.779746 

0.002195 
**  

0.010774 
* 

0.087946 
.   

MOD_037 3.84e-06 
*** 

0.000583 
*** 

0.000181 
*** 0.137015           

0.028216 
*       0.149650 

0.020350 
*   

0.035802 
*     

0.009527 
** 

0.045495 
*   

MOD_038 7.14e-06 
*** 

0.002021 
**  

0.000128 
***                     

0.005517 
**      0.192412   

0.005555 
**  

0.005050 
** 

0.064144 
.   

MOD_039 6.77e-06 
*** 

0.001316 
**  

0.000185 
***             0.129616       

0.025254 
*         

0.011257 
* 

0.004673 
**  

0.027445 
*   

MOD_040 1.28e-05 
*** 

0.001759 
** 

0.000176 
***                     

0.022790 
*           

0.004765 
**  

0.010701 
* 

0.056126 
.   
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_041 4.3e-06 
*** 

0.00094 
*** 

0.00024 
***             0.08196 .       

0.03150 
*   

0.00694 
**        

0.00748 
**    0.06643 .     

MOD_042 1.96e-06 
*** 

0.000777 
*** 

0.000227 
*** 0.191803           

0.084743 
.       

0.031654 
*   

0.007340 
**        

0.007648 
**   

0.068265 
.   

MOD_043 6.13e-06 
*** 

0.001353 
**  

0.000239 
***             

0.027896 
*       

0.028501 
*   

0.008901 
**      0.188074 

0.008694 
**    

0.076037 
.     

MOD_044 7.27e-06 
*** 

0.000722 
*** 

0.000163 
***                     

0.020749 
*         

0.004243 
**  

0.004859 
**  

0.042626 
*   0.252587 

MOD_045 8.01e-06 
*** 

0.001562 
** 

0.000187 
***               0.321176      

0.022301 
*         

0.005927 
** 

0.007689 
** 

0.037992 
*   

MOD_046 3.44e-06 
*** 

0.001294 
** 

0.000185 
***             

0.078238 
.       

0.022830 
*   

0.020287 
*     0.258753   

0.016820 
*   

0.077657 
.     

MOD_047 2.57e-06 
*** 

0.000828 
*** 

0.000242 
***             

0.094463 
.         

0.029131 
*   

0.007243 
**        

0.006561 
**    

0.065187 
. 0.372615     

MOD_048 1.11e-05 
*** 

0.001787 
**  

0.000166 
***         0.489945           

0.024139 
*         

0.005506 
**  

0.005831 
**  

0.048574 
*   

MOD_049 3.87e-06 
*** 

0.001271 
**  

0.000264 
***       0.373380     

0.074124 
.       

0.029431 
* 

0.005391 
**        

0.007658 
**   

0.070969 
.   

MOD_050 1.63e-05 
*** 

0.000838 
*** 

0.000230 
***     0.457617               

0.024625 
*          

0.005192 
** 

0.005848 
** 

0.057362 
.     

MOD_051 1.26e-05 
*** 

0.001849 
**  

0.000169 
***           0.586866         

0.025375 
*           

0.005189 
**  

0.005936 
**  

0.052347 
.   

MOD_052 1.22e-05 
*** 

0.002094 
** 

0.000184 
***       0.568758             

0.021714 
*         

0.004733 
**  

0.005270 
**  

0.057355 
.   

MOD_053 1.89e-05 
*** 

0.002195 
**  

0.000178 
***                     

0.025728 
*       0.768214 

0.004921 
**  

0.006149 
**  

0.054696 
.   

MOD_054 1.46e-05 
*** 

0.000894 
*** 

0.000171 
*** 0.145908                   0.143721 

0.034406 
*   

0.064898 
.     

0.013223 
* 

0.081758 
.     

MOD_055 3.63e-06 
*** 

0.000914 
*** 

0.000243 
***             0.155561 0.591456     

0.030993 
* 

0.006994 
**       

0.007675 
**   

0.064662 
.   

MOD_056 1.7e-05 
*** 

0.000825 
*** 

0.000181 
***                 0.698496   

0.024033 
*           

0.005060 
**  

0.011114 
* 

0.047637 
*   

MOD_057 5.19e-06 
*** 

0.000846 
*** 

0.000247 
***             

0.094710 
.       0.643499     

0.030593 
*   

0.006242 
**        

0.008795 
**    

0.065195 
.     

MOD_058 1.38e-05 
*** 

0.001722 
** 

0.000177 
***                   0.868815 

0.022584 
*           

0.005513 
**  

0.006766 
** 

0.055496 
.   

MOD_059 5.3e-06 
*** 

0.000968 
*** 

0.000284 
***     0.621061       0.119626       

0.034757 
* 

0.008760 
**        

0.007500 
**    

0.073093 
.     

MOD_060 1.28e-05 
*** 

0.001834 
**  

0.000176 
***                     

0.022752 
*   0.981581     

0.006738 
**  

0.010859 
* 

0.059051 
.   

MOD_061 4.58e-06 
*** 

0.000963 
*** 

0.000240 
***             0.199057       

0.031095 
*   

0.012839 
*   0.821953         

0.008841 
**    

0.065546 
.   

MOD_062 4.89e-06 
*** 

0.000934 
*** 

0.000245 
***             

0.092970 
.     0.808590       

0.033647 
*   

0.007244 
**        

0.007657 
**    

0.070400 
.     

MOD_063 4.24e-06 
*** 

0.000938 
*** 

0.000249 
***         0.819274   0.112829       

0.033903 
* 

0.006813 
**       

0.007626 
**    

0.067660 
.   
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_064 4.34e-06 
*** 

0.000968 
*** 

0.000240 
***           0.985662 0.105106       

0.028237 
*   

0.007053 
**        

0.007483 
**    

0.066412 
.     

MOD_065 9.7e-06 
*** 

0.001654 
** 

0.000295 
*** 0.202261               

0.003690 
**       0.342542 

0.038151 
*     0.195119   

0.015385 
* 

0.063814 
.   

MOD_066 6.45e-06 
*** 

0.000477 
*** 

0.000292 
*** 0.186850               

0.016484 
*       0.277232 

0.028091 
*         

0.014368 
* 

0.047456 
*   

MOD_067 8.22e-06 
*** 0.0019 ** 

9.83e-05 
*** 0.0544 .           0.0160 *         0.1095   0.0652 .     0.0102 *   0.0330 *   

MOD_068 3.73e-05 
*** 

0.001108 
** 

0.000164 
***                     0.155011 

0.035575 
*   

0.092201 
.     

0.012359 
* 

0.082967 
.   

MOD_069 5.8e-06 
*** 

0.000617 
*** 

0.000305 
*** 0.191804     0.312626     

0.013870 
*       0.258557 

0.019305 
*         

0.012671 
* 

0.051614 
.   

MOD_070 4.22e-06 
*** 

0.000418 
*** 

0.000280 
*** 0.190995           

0.020363 
*       0.274184     

0.029744 
*         

0.013235 
* 

0.047758 
* 0.436347 

MOD_071 7.11e-06 
*** 

0.000428 
*** 

0.000284 
*** 0.185455           0.139163       0.258195 

0.023803 
* 0.464410       

0.014426 
* 

0.045160 
*   

MOD_072 7.54e-06 
*** 

0.000408 
*** 

0.000296 
*** 0.188644           

0.022550 
*     0.492229 0.252843 

0.024813 
*         

0.015179 
* 

0.045352 
*   

MOD_073 6.24e-06 
*** 

0.001759 
**  

0.000101 
*** 

0.050104 
.           

0.047783 
* 0.423827       0.106683       

0.084598 
.     

0.010203 
*   

0.031337 
*   

MOD_074 8.48e-06 
*** 

0.00275 
** 

7.98e-05 
*** 0.05849 .           

0.02687 
*         

0.04951 
*   0.12493   0.34598 

0.00979 
** 

0.03506 
*   

MOD_075 5.32e-06 
*** 

0.000438 
*** 

0.000301 
*** 0.178443           

0.046367 
* 0.531956     0.272212 

0.026417 
*         

0.014739 
* 

0.045920 
*   

MOD_076 7.84e-06 
*** 

0.002232 
**  

0.000111 
*** 

0.054828 
.      0.424411     

0.014080 
*         

0.092704 
.    

0.071315 
.     

0.009352 
**  

0.033700 
*   

MOD_077 4.08e-06 
*** 

0.002209 
** 

0.000112 
*** 

0.037883 
*           

0.001168 
**         

0.000321 
***   

0.069483 
. 

0.064137 
.   

0.011391 
* 

0.037384 
*   

MOD_078 6.69e-06 
*** 

0.000502 
*** 

0.000303 
*** 0.180022           

0.018186 
*   0.797287   0.280939 

0.027041 
*           

0.014692 
*   

0.051128 
.   

MOD_079 6.44e-06 
*** 

0.00180 
**  

9.57e-05 
*** 0.05465 .           

0.01847 
*         0.06005 .     0.07040 .     

0.00969 
**  

0.03208 
* 0.56238 

MOD_080 6.13e-06 
*** 

0.000462 
*** 

0.000305 
*** 0.187070        0.685858   

0.025209 
*       0.284299 

0.026950 
*         

0.013863 
* 

0.048528 
*   

MOD_081 7.7e-06 
*** 

0.000487 
*** 

0.000334 
*** 0.188278   0.705338       

0.027335 
*       0.274458 

0.027236 
*         

0.015173 
* 

0.051282 
.   

MOD_082 8.08e-06 
*** 

0.00203 
** 

0.00010 
*** 0.05169 .           

0.01792 
*   0.75278     0.10799   0.06367 .     0.01063 * 

0.03558 
*   

MOD_083 6.3e-06 
*** 

0.000482 
*** 

0.000294 
*** 0.186047         0.878735 

0.021659 
*       0.278398 

0.027269 
*         

0.014202 
* 

0.047423 
*   

MOD_084 5.06e-06 
*** 

0.000970 
*** 

0.000186 
*** 0.124357               

0.040019 
*       0.211392 

0.056803 
.   

0.043996 
*       

0.062161 
.   

MOD_085 8.83e-06 
*** 0.0018 **  

9.72e-05 
*** 0.0529 .             0.0197 *       0.6465   0.1019   0.0615 .     0.0106 * 0.0314 *   

MOD_086 9.41e-06 
*** 

0.001917 
**  

0.000121 
*** 

0.055430 
.     0.644941       

0.028337 
*         0.106494    

0.067134 
.     

0.010873 
* 

0.035194 
*   
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_087 7.88e-06 
*** 

0.001860 
**  

0.000102 
*** 

0.053359 
.         0.717308   

0.025369 
*           0.105043   

0.064080 
.     

0.009951 
**  

0.033482 
*   

MOD_088 8.66e-06 
*** 

0.00189 
**  

9.55e-05 
*** 0.05490 .           0.07739 .          0.11694 0.74474 0.06406 .     0.01043 * 

0.03194 
*   

MOD_089 1.13e-05 
*** 

0.001897 
** 

0.000121 
*** 

0.074822 
.           

0.039197 
*         

0.060044 
.       0.145162 

0.013346 
* 

0.038414 
*   

MOD_090 8.10e-06 
*** 

0.00191 
**  

9.98e-05 
*** 0.05392 .           0.86083 

0.02031 
*         0.10843       0.06505 .     0.01009 * 

0.03295 
*     

MOD_091 1.21e-05 
*** 

0.001057 
**  

0.000186 
*** 

0.072916 
.           

0.012216 
*         

0.086119 
.         

0.015544 
* 

0.037096 
*   

MOD_092 5.51e-06 
*** 

0.002191 
** 

0.000208 
*** 

0.064692 
.           

0.001021 
**          

0.001651 
**      0.147911   

0.016805 
* 

0.048377 
*   

MOD_093 2.14e-05 
*** 

0.000885 
*** 

8.86e-05 
*** 

0.049985 
*                     

0.028589 
* 0.101660 0.108442     

0.012802 
* 

0.043697 
*   

MOD_094 1.14e-05 
*** 

0.001306 
**  

0.000201 
*** 

0.073030 
.       0.376765     

0.010308 
*         

0.072787 
.         

0.013866 
* 

0.038373 
*   

MOD_095 1.34e-05 
*** 

0.001077 
**  

0.000112 
*** 

0.040703 
*             0.125413       

0.063747 
.   

0.042674 
*     

0.013013 
* 

0.048718 
*   

MOD_096 1.19e-05 
*** 

0.001367 
**  

0.000548 
*** 

0.073021 
.   0.443128             

0.009436 
**          

0.077515 
.           

0.016307 
* 

0.035524 
*     

MOD_097 7.51e-05 
*** 

0.000414 
*** 

0.000271 
***                     0.179079 

0.056291 
.         

0.018407 
* 

0.091287 
.   

MOD_098 7.68e-06 
*** 

0.001756 
** 

0.000204 
***             0.167100       

0.037244 
*         

0.017399 
*     

0.041555 
*   

MOD_099 8.7e-06 
*** 

0.000982 
*** 

0.000180 
*** 

0.074073 
.             

0.014889 
*           

0.040524 
*           

0.014373 
*   

0.035350 
*   0.501052     

MOD_100 3.49e-05 
*** 

0.000322 
*** 

0.000278 
*** 0.202381                   0.253790     

0.051631 
.         

0.019118 
* 

0.096529 
.     

MOD_101 1.01e-05 
*** 

0.000989 
*** 

0.000191 
*** 

0.069348 
.           

0.037170 
*   0.527996           

0.083632 
.           

0.015858 
*   

0.035760 
*     

MOD_102 7.13e-06 
*** 

0.000820 
*** 

0.000182 
*** 0.197698                   

0.032243 
*         

0.007578 
**   

0.072019 
.   

MOD_103 1.22e-05 
*** 

0.001092 
** 

0.000193 
*** 

0.069599 
.             

0.013921 
*   0.796561     

0.084555 
.         

0.016374 
* 

0.039791 
*     

MOD_104 1.38e-05 
*** 

0.001050 
**  

0.000227 
*** 

0.073335 
.   0.616826       

0.021622 
*         

0.085229 
.         

0.016533 
* 

0.039682 
*     

MOD_105 3.03e-05 
*** 

0.001290 
**  

0.000105 
*** 

0.045757 
*                     0.115698   0.121383     

0.014230 
* 

0.061140 
.   

MOD_106 9.61e-06 
*** 

0.001746 
** 

0.000286 
*** 0.206215           

0.005369 
**        0.360997 

0.024428 
*       0.202430     

0.081117 
.   

MOD_107 1.3e-05 
*** 

0.000998 
*** 

0.000189 
*** 

0.070891 
.           

0.014445 
*     0.724593   

0.081566 
.         

0.016127 
* 

0.035588 
*   

MOD_108 1.17e-05 
*** 

0.001047 
** 

0.000196 
*** 

0.071216 
.         0.757761       

0.025168 
*           

0.083360 
.         

0.015204 
*   

0.037363 
*     

MOD_109 1.26e-05 
*** 

0.001035 
** 

0.000182 
*** 

0.072614 
.           

0.084128 
.           0.106619 0.722774       

0.015679 
* 

0.036693 
*   



365 
 

Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_110 1.2e-05 
*** 

0.001079 
**  

0.000188 
*** 

0.072365 
.         0.897324     

0.017818 
*         

0.085576 
.         

0.015412 
* 

0.036981 
*   

MOD_111 3.73e-05 
*** 

0.001385 
** 

0.000109 
*** 

0.058141 
.                      

0.077270 
.       

0.054555 
. 

0.015771 
* 

0.068591 
.   

MOD_112 2.84e-05 
*** 

0.00196 
** 

7.60e-05 
*** 0.05137 .                     0.05848 .   0.34346   0.19088 0.01277 * 0.06308 .   

MOD_113 1.88e-05 
*** 

0.001164 
** 

0.000121 
*** 

0.055562 
.             0.190564       

0.031862 
*       

0.068583 
. 

0.015450 
*   

0.056223 
.   

MOD_114 8.43e-06 
*** 

0.000928 
*** 

0.000187 
***                     

0.029117 
*           

0.007451 
**    

0.060067 
. 0.312943     

MOD_115 8.26e-06 
*** 

0.00093 
*** 

0.00020 
***               0.34098         

0.03589 
*           

0.01013 
*     0.06227 .     

MOD_116 2.62e-05 
*** 

0.000917 
*** 

0.000107 
*** 

0.062935 
.                     

0.015636 
* 0.203233      0.118879 

0.015113 
* 

0.051897 
.   

MOD_117 1.27e-05 
*** 

0.001042 
**  

0.000203 
***                     

0.030189 
*     0.287891   

0.005687 
**   

0.072952 
.   

MOD_118 2.62e-05 
*** 

0.00141 
** 

9.34e-05 
*** 0.04935 *       0.49021             0.07690 .   0.06597 .     0.01417 * 0.05110 .   

MOD_119 3.06e-05 
*** 

0.001214 
**  

0.000157 
*** 

0.047743 
*   0.323943                 

0.063927 
.     0.127684     

0.015373 
* 

0.066264 
.   

MOD_120 4.22e-05 
*** 

0.000452 
*** 

0.000833 
*** 0.217961 0.381257                 0.237336 

0.044790 
*         

0.019794 
*   

0.099912 
.     

MOD_121 1.29e-05 
*** 

0.00104 
**  

0.00018 
***         0.46504           

0.02890 
*         

0.00932 
**    0.05299 .   

MOD_122 1.69e-05 
*** 

0.00102 
** 

0.00025 
***     0.42948               

0.03367 
*         

0.00889 
**    0.07539 .   

MOD_123 6.15e-06 
*** 

0.000797 
*** 

0.000990 
*** 0.203397 0.309509         

0.020234 
*       0.315714 

0.011955 
*           

0.062056 
.   

MOD_124 3.04e-05 
*** 

0.00169 
**  

0.00031 
*** 0.04724 * 0.41620                   0.09865 .   

0.03933 
*     0.01489 * 0.06175 .   

MOD_125 2.11e-05 
*** 

0.002917 
**  

0.000196 
***                     

0.034998 
*       0.696349 

0.008551 
**    

0.077415 
.     

MOD_126 3.75e-05 
*** 

0.001300 
** 

0.000162 
*** 

0.060106 
.   0.313907                 

0.035044 
*       

0.054650 
. 

0.017073 
* 

0.071327 
.   

MOD_127 2.08e-05 
*** 

0.001193 
**  

0.000104 
*** 

0.046410 
*                     0.116165   

0.054437 
.       

0.012902 
*   

0.057874 
. 0.454612  

MOD_128 1.5e-05 
*** 

0.001060 
**  

0.000184 
***           0.538089         

0.030026 
*           

0.008902 
**    

0.057425 
.   

MOD_129 3.24e-05 
*** 

0.001194 
** 

0.000104 
*** 

0.043768 
*                 0.467945   

0.058612 
.   0.113024     

0.014693 
* 

0.056598 
.   

MOD_130 2.22e-05 
*** 

0.001271 
** 

0.000109 
*** 

0.060333 
.                     

0.076334 
.       

0.053454 
. 

0.013878 
*   

0.065917 
. 0.371920 

MOD_131 1.8e-05 
*** 

0.001017 
**  

0.000199 
***                 0.585913    

0.032929 
*         

0.008783 
**    

0.067156 
.     

MOD_132 5.11e-06 
*** 

0.000735 
*** 

0.000310 
*** 0.191432         0.380624     

0.020325 
*       0.283382 

0.011548 
*           

0.064475 
.     
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_133 3.5e-05 
*** 

0.003188 
** 

0.000104 
*** 

0.042322 
*                     0.147607   

0.076817 
. 0.571522   

0.014079 
* 

0.067470 
.    

MOD_134 3.16e-05 
*** 

0.001244 
** 

0.000106 
*** 

0.044656 
*               0.579587     0.114834   

0.047106 
*       

0.015696 
*   

0.068100 
.   

MOD_135 3.26e-05 
*** 

0.00142 
**  

9.87e-05 
*** 0.04810 *         0.54592            0.07187 .   0.05752 .       0.01466 *   0.05726 .   

MOD_136 2.96e-05 
*** 

0.001440 
**  

0.000119 
*** 

0.045927 
*     0.508557               0.100148       

0.050523 
.     

0.013346 
* 

0.062571 
.   

MOD_137 6.53e-06 
*** 

0.000458 
*** 

0.000292 
*** 0.187133           

0.031740 
*     0.446268 0.284542 

0.012901 
*           

0.057648 
.   

MOD_138 1.47e-05 
*** 

0.001216 
** 

0.000205 
***       0.662971             

0.034993 
*         

0.008028 
**    

0.074110 
.     

MOD_139 1.81e-05 
*** 

0.001263 
**  

0.000434 
***   0.674190                 

0.038920 
*         

0.009887 
**   

0.062294 
.   

MOD_140 3.27e-05 
*** 

0.001400 
**  

0.000102 
*** 

0.066382 
.       0.450847             

0.040188 
*         

0.077652 
. 

0.016115 
*  

0.059699 
.   

MOD_141 6.11e-06 
*** 

0.000488 
*** 

0.000281 
*** 0.183673               0.163583       0.291954 

0.013434 
* 0.462450         

0.058713 
.   

MOD_142 1.67e-05 
*** 

0.001018 
**  

0.000193 
***                   0.817493     

0.035821 
*          

0.009425 
**    

0.060930 
.     

MOD_143 3.95e-06 
*** 

0.000491 
*** 

0.000282 
*** 0.191655               

0.027476 
*       0.311587     

0.016161 
*         0.502415 

0.059803 
.   

MOD_144 8.81e-06 
*** 

0.000980 
*** 

0.000401 
*** 0.201620     0.708347                     

0.042717 
*         

0.008868 
**      

0.072040 
.   

MOD_145 1.56e-05 
*** 

0.001133 
**  

0.000192 
***                     

0.036555 
*     0.851290         

0.009901 
**    

0.067854 
.     

MOD_146 4.52e-06 
*** 

0.000509 
*** 

0.000290 
*** 0.177258               

0.062078 
.   0.507558     0.308115 

0.016261 
*           

0.060756 
.     

MOD_147 3.59e-05 
*** 

0.001571 
** 

0.000122 
*** 

0.057218 
.     0.508083                

0.069304 
.       

0.056006 
. 

0.014565 
* 

0.070321 
.    

MOD_148 3.93e-05 
*** 

0.001321 
** 

0.000113 
*** 

0.056936 
.                 0.533882     

0.077517 
.         

0.055466 
. 

0.017519 
* 

0.074929 
.     

MOD_149 6.14e-06 
*** 

0.000555 
*** 

0.000295 
*** 0.178171               

0.027398 
*   0.839074   0.319990 

0.015906 
*           

0.068131 
.     

MOD_150 6.78e-06 
*** 

0.000560 
*** 

0.000334 
*** 0.186786       0.622799       

0.039113 
*       0.307482 

0.014480 
*           

0.067224 
.     

MOD_151 3.85e-05 
*** 

0.001437 
** 

0.000105 
*** 

0.063454 
.         0.598450           

0.080375 
.       

0.065641 
. 

0.016398 
* 

0.065378 
.   

MOD_152 4.02e-05 
*** 

0.001672 
**  

0.000254 
*** 

0.056765 
. 0.621687                   

0.071508 
.       

0.053792 
. 

0.016047 
* 

0.068697 
.   

MOD_153 3.43e-05 
*** 

0.003525 
**  

0.000111 
*** 

0.057507 
.                     

0.086837 
.     0.818696  

0.053409 
. 

0.015944 
* 

0.072601 
.   

MOD_154 5.44e-06 
*** 

0.000548 
*** 

0.000297 
*** 0.186254       0.759249   

0.038454 
*       0.319555 

0.015605 
*           

0.063505 
.   

MOD_155 6.52e-06 
*** 

0.002919 
** 

0.000373 
*** 

0.057323 
. 0.326024         

0.020804 
*         

0.066829 
.   

0.087483 
.       

0.042706 
*   
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_156 3.97e-05 
*** 

0.001328 
**  

0.000115 
*** 

0.056502 
.                 0.747083   

0.073775 
.       

0.061738 
.  

0.016314 
* 

0.066337 
.   

MOD_157 5.63e-06 
*** 

0.000572 
*** 

0.000285 
*** 0.186023         0.998736 

0.033563 
*       0.313958 

0.014820 
*           

0.059523 
.     

MOD_158 3.18e-05 
*** 

0.000560 
*** 

0.000514 
*** 

0.061263 
. 0.455800                   

0.015654 
* 

0.053981 
.       

0.018990 
* 

0.049052 
*   

MOD_159 3.3e-05 
*** 

0.000632 
*** 

0.000645 
*** 0.232540     0.466235                     

0.081768 
.         

0.010466 
*   

0.068146 
.     

MOD_160 9.76e-06 
*** 

0.001393 
** 

0.000577 
*** 

0.072682 
. 0.411524         

0.012586 
*         

0.055143 
.           

0.043095 
*   

MOD_161 8.84e-06 
*** 

0.002462 
**  

0.000407 
*** 

0.072426 
. 0.412826             

0.036786 
*           

0.038799 
*         0.171710       

0.045669 
*   

MOD_162 2.61e-05 
*** 

0.000710 
*** 

0.000471 
*** 

0.053539 
. 0.658100           0.136824        0.108820             

0.020126 
* 

0.060232 
.   

MOD_163 4.13e-05 
*** 

0.001107 
**  

0.000467 
*** 

0.067116 
.   0.437270         0.461898                 

0.069839 
.           

0.021434 
* 

0.057953 
.     

MOD_164 5.63e-05 
*** 

0.000870 
*** 

0.000451 
*** 

0.056148 
. 0.653378                   0.123729         

0.020851 
* 

0.075733 
.   

MOD_165 1.4e-05 
*** 

0.001904 
**  

0.000453 
*** 

0.078117 
.   0.683445             

0.006143 
**          

0.088400 
.       0.434986         

0.054116 
.     

MOD_166 3.25e-05 
*** 

0.00050 
*** 

0.00083 
*** 0.21030 0.36266                 0.26906     

0.02418 
*           0.11755   

MOD_167 9.13e-06 
*** 

0.001721 
**  

0.000589 
*** 

0.072909 
. 0.437889   0.487450     

0.011301 
*         

0.048325 
*           

0.044740 
*   

MOD_168 8.18e-06 
*** 

0.001315 
**  

0.000566 
*** 

0.069346 
. 0.434968         

0.037567 
* 0.543112       

0.053513 
.           

0.041610 
*   

MOD_169 5.52e-05 
*** 

0.00076 
*** 

0.00053 
*** 0.05741 .   0.79005     0.34780                     0.12032             0.02267 *   0.07642 .     

MOD_170 3.5e-05 
*** 

0.000767 
*** 

0.000427 
*** 

0.058287 
. 0.698969                   0.124034             

0.018525 
* 

0.070341 
.   0.400318 

MOD_171 8.12e-06 
*** 

0.001291 
**  

0.000559 
*** 

0.074300 
. 0.434911             

0.014730 
*         

0.055892 
.             

0.041756 
*   0.624724 

MOD_172 5.81e-05 
*** 

0.00103 
**  

0.00047 
*** 0.06226 . 0.54327           0.39295           0.12313         0.02219 * 0.06934 .   

MOD_173 1e-05 
*** 

0.00138 
**  

0.00057 
*** 0.06956 . 0.47642         

0.01535 
*   0.84123     0.05534 .           

0.04611 
*   

MOD_174 1.08e-05 
*** 

0.001330 
** 

0.000607 
*** 

0.072782 
. 0.476562 0.661019       

0.023097 
*         

0.055123 
.           

0.046094 
*   

MOD_175 1.01e-05 
*** 

0.001329 
** 

0.000598 
*** 

0.071745 
. 0.389548         

0.093548 
.         

0.066526 
. 0.645314         

0.040923 
*   

MOD_176 1.02e-05 
*** 

0.001332 
** 

0.000562 
*** 

0.070758 
. 0.448172             

0.015053 
*     0.774339   

0.053041 
.           

0.043593 
*   

MOD_177 1.02e-05 
*** 

0.001491 
** 

0.000581 
*** 

0.073686 
. 0.407987       0.918523 

0.022352 
*         

0.055900 
.           

0.043200 
*   

MOD_178 9.94e-06 
*** 

0.001478 
** 

0.000577 
*** 

0.072577 
. 0.427725     0.946324   

0.036167 
*         

0.055742 
.           

0.043200 
*   
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_179 1.23e-05 
*** 

0.001175 
**  

0.000582 
*** 0.202779 0.326603                 

0.050591 
.     

0.063146 
.         

0.078622 
.   

MOD_180 2.27e-05 
*** 

0.001757 
**  

0.000337 
*** 

0.047071 
* 0.391852                   

0.038684 
*   

0.058553 
.       

0.077069 
.   

MOD_181 5.35e-05 
*** 

0.000978 
*** 

0.000455 
*** 

0.055754 
.   0.696404       0.507683                   0.109588             

0.019398 
* 

0.077919 
.     

MOD_182 5.82e-05 
*** 

0.000797 
*** 

0.000430 
*** 

0.053595 
. 0.720558               0.585152   0.111539             

0.021422 
* 

0.071136 
.   

MOD_183 5.72e-05 
*** 

0.000802 
*** 

0.000415 
*** 

0.054644 
. 0.765345             0.629975     0.125807         

0.022530 
* 

0.081715 
.   

MOD_184 8.41e-06 
*** 

0.001433 
** 

0.000698 
*** 0.226746     0.417003         

0.050076 
.       0.121290             

0.045305 
*   

MOD_185 4.24e-05 
*** 

0.001982 
** 

0.000531 
*** 

0.056044 
. 0.607490                   0.126350     0.729012   

0.021027 
* 

0.070915 
.   

MOD_186 2.93e-05 
*** 

0.001699 
**  

0.000268 
*** 

0.055318 
.   0.599916                       

0.053014 
.       

0.068547 
.   

0.082636 
.   

MOD_187 2.35e-05 
*** 

0.000564 
*** 

0.000534 
*** 

0.059131 
. 0.427717                       

0.010563 
* 

0.060596 
.         

0.057752 
.   

MOD_188 6.46e-05 
*** 

0.002369 
** 

0.000251 
***                     

0.090405 
.       0.485321     

0.094959 
.   

MOD_189 1.97e-05 
*** 

0.000744 
*** 

0.000462 
*** 

0.052917 
. 0.628440            0.142613        

0.039152 
*           

0.069441 
.   

MOD_190 2.99e-05 
*** 

0.001143 
**  

0.000472 
*** 

0.066923 
. 0.410537     0.44222             

0.087686 
.           

0.064497 
.   

MOD_191 3.29e-05 
*** 

0.001906 
** 

0.000242 
*** 0.219015                   0.124180       0.471979     

0.095833 
.   

MOD_192 4.23e-05 
*** 

0.000911 
*** 

0.000446 
*** 

0.055476 
.   0.623712                       

0.090021 
.           

0.083576 
.   

MOD_193 2.81e-05 
*** 

0.000833 
*** 

0.000634 
*** 0.231186     0.461926                     

0.081688 
.             

0.088430 
.     

MOD_194 1.53e-05 
*** 

0.000697 
*** 

0.000642 
*** 0.216312 0.489386           0.225107     

0.091376 
.             

0.066402 
.   

MOD_195 2.09e-05 
*** 

0.000883 
*** 

0.000661 
*** 0.228649 0.364698      0.299644           0.107192             

0.072806 
.   

MOD_196 4.09e-05 
*** 

0.000785 
*** 

0.000526 
*** 

0.056656 
. 0.759762 0.315158                 

0.046128 
*           

0.087497 
.   

MOD_197 4.22e-05 
*** 

0.001058 
** 

0.000477 
*** 

0.061900 
. 0.510316       0.366928           

0.090084 
.           

0.077297 
.   

MOD_198 2.65e-05 
*** 

0.000895 
*** 

0.000676 
*** 0.232981 0.393105       0.403589         

0.090311 
.             

0.081839 
.   

MOD_199 2.37e-05 
*** 

0.000726 
*** 

0.000671 
*** 0.230924  0.421820                 

0.095886 
. 0.423944           

0.067058 
.   

MOD_200 6e-05 
*** 

0.002940 
** 

0.000688 
***   0.505956                  

0.078143 
.       0.588718     

0.089185 
.   

MOD_201 1.78e-05 
*** 

0.000738 
*** 

0.000585 
*** 0.238290     0.500118                     

0.083303 
.             0.416804 

0.076434 
.   
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_202 2.94e-05 
*** 

0.000820 
*** 

0.000434 
*** 

0.058052 
. 0.660974                   

0.090090 
.           

0.082197 
. 0.486166 

MOD_203 4.31e-05 
*** 

0.000819 
*** 

0.000398 
*** 

0.053720 
. 0.759925             0.498998     

0.091931 
.           

0.094554 
.   

MOD_204 3.17e-05 
*** 

0.002330 
**  

0.000651 
*** 0.226826     0.537226                     0.110239     0.553152        

0.096329 
.    

MOD_205 4.28e-05 
*** 

0.000826 
*** 

0.000425 
*** 

0.052154 
. 0.695406               0.553243   

0.079854 
.           

0.078116 
.   

MOD_206 2.93e-05 
*** 

0.000771 
*** 

0.000681 
*** 0.231776 0.567332 0.464866               

0.099629 
.             

0.092765 
.   

MOD_207 4.06e-05 
*** 

0.001046 
** 

0.000458 
*** 

0.055307 
.   0.654797   0.583852               

0.081411 
.           

0.085872 
.   

MOD_208 3.25e-05 
*** 

0.002086 
** 

0.000515 
*** 

0.055470 
. 0.588795                   

0.095891 
.     0.717392      

0.081373 
.   

MOD_209 2.93e-05 
*** 

0.000782 
*** 

0.000599 
*** 0.230563     0.518010                0.635146  

0.089834 
.             

0.084814 
.   

MOD_210 3.05e-05 
*** 

0.000775 
*** 

0.000581 
*** 0.223818  0.573004              0.597125       

0.099251 
.             

0.087809 
.    

MOD_211 2.74e-05 
*** 

0.000929 
*** 

0.000639 
*** 0.234417 0.473406   0.786813              

0.078637 
.             

0.083722 
.   

MOD_212 2.1e-05 
*** 

0.001161 
**  

0.000223 
*** 

0.036065 
* 0.288127                             

0.002424 
**     0.102276       

MOD_213 1.09e-06 
*** 

0.000510 
*** 

0.000205 
*** 

0.037363 
* 0.291733         

0.000914 
***                     

0.035856 
*   

MOD_214 7.7e-06 
*** 

0.001415 
**  

0.000117 
*** 

0.026021 
*   0.268612                               

0.017243 
*   

0.069889 
.   

MOD_215 3.59e-06 
*** 

0.000186 
*** 

0.000147 
*** 

0.019127 
* 

0.094092 
.                             

0.030072 
* 

0.077109 
.   

MOD_216 3.31e-06 
*** 

0.000512 
*** 

0.000165 
*** 

0.033049 
* 0.221700         

0.053120 
.                         

0.066909 
.   

MOD_217 1.22e-06 
*** 

0.000219 
*** 

0.000141 
*** 

0.021622 
* 

0.050497 
.           

0.069908 
.                   

0.067272 
.   

MOD_218 3.4e-06 
*** 

0.000241 
*** 

0.000136 
*** 

0.021247 
*   

0.082393 
.                                 

0.089643 
.   

MOD_219 3.89e-06 
*** 

0.000361 
*** 

0.000152 
*** 

0.024656 
* 0.128405       0.226410                       

0.080444 
.   

MOD_220 4.97e-06 
*** 

0.000301 
*** 

0.000146 
*** 

0.028991 
*   0.150994                           0.153942       0.103023   

MOD_221 1.91e-06 
*** 

0.000215 
*** 

0.000116 
*** 

0.023361 
* 

0.073774 
.                               

0.076895 
. 0.285026 

MOD_222 3.41e-06 
*** 

0.000201 
*** 

0.000153 
*** 

0.022787 
*   

0.071613 
. 0.260840                             

0.097389 
.   

MOD_223 3.89e-06 
*** 

0.000213 
*** 

0.000113 
*** 

0.020329 
* 

0.073280 
.             0.300368                     0.102841       

MOD_224 4.01e-06 
*** 

0.000211 
*** 

0.000149 
*** 

0.023514 
* 0.116227                         0.492048         

0.075883 
.   



370 
 

Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_225 4.26e-06 
*** 

0.000218 
*** 

0.000139 
*** 

0.022608 
* 0.120212    0.408230                            

0.082549 
.   

MOD_226 5.11e-06 
*** 

0.000298 
*** 

0.000176 
*** 

0.026004 
*   0.126689               0.683474               

0.087127 
.   

MOD_227 5.3e-07 
*** 

0.000272 
*** 

0.000563 
*** 

0.016096 
*                                   

0.087159 
.   

MOD_228 7.22e-07 
*** 

0.003386 
** 

0.000105 
*** 0.366688 0.181157                 

0.013903 
*         

0.034095 
*       

MOD_229 1.26e-06 
*** 

0.001910 
** 

0.000239 
*** 0.406184 0.107536                 

0.016400 
*           

0.030537 
*     

MOD_230 3.01e-07 
*** 

0.001185 
**  

0.000155 
*** 0.448254 0.141394                 

0.022227 
*               0.066424 . 

MOD_231 1.41e-06 
*** 

0.000331 
*** 

0.000393 
*** 0.449223 0.141705               

0.047311 
* 

0.022130 
*                 

MOD_232 3.82e-07 
*** 

0.001526 
** 

0.000169 
*** 0.410681 0.106558         0.101609       

0.029281 
*                 

MOD_233 2.72e-06 
*** 

0.000784 
*** 

0.000231 
*** 0.426383 0.160054                 

0.037470 
*       0.246139         

MOD_234 1.08e-06 
*** 

0.00191 
** 

0.00022 
*** 0.43862 0.11296                 0.42663 0.38236               

MOD_235 1.08e-06 
*** 

0.00191 
**  

0.00022 
*** 0.43864 0.11301                 

0.01659 
*                 

MOD_236 6.64e-07 
*** 

0.001865 
** 

0.000193 
*** 0.417901 

0.080505 
.     0.220630           

0.025646 
*                 

MOD_237 7.88e-07 
*** 

0.00111 
**  

6.44e-06 
*** 0.41999                       

0.02933 
*                 

MOD_238 7.16e-07 
*** 

0.001754 
** 

0.000193 
*** 0.420593 

0.097719 
.                 

0.013291 
*     0.267686           

MOD_239 7.72e-07 
*** 

0.001700 
** 

0.000208 
*** 0.430489 0.119769           0.371001     

0.018705 
*                 

MOD_240 1.54e-06 
*** 

0.001793 
** 

0.000182 
*** 0.419472 0.191969             0.493775   

0.021593 
*                 

MOD_241 9.15e-07 
*** 

0.001968 
**  

0.000221 
*** 0.432365     

0.092315 
.       0.440008         

0.019303 
*                 

MOD_242 1.54e-06 
*** 

0.001791 
** 

0.000233 
*** 0.451454 0.152134 0.487260               

0.020452 
*                 

MOD_243 1.01e-06 
*** 

0.001844 
** 

0.000215 
*** 0.439836 0.108568                 

0.019855 
*   0.714456             

MOD_244 1.08e-06 
*** 

0.002206 
** 

0.000226 
*** 0.450069 0.121989   0.693138             

0.018144 
*                 

MOD_245 1.21e-06 
*** 

0.000401 
*** 

1.07e-05 
*** 

0.059246 
.                     

0.006608 
**               

MOD_246 1.36e-06 
*** 

0.000604 
*** 

0.000240 
*** 

0.052636 
. 0.206875                   

0.004568 
**               

MOD_247 8.52e-07 
*** 

0.000153 
*** 

5.19e-05 
*** 

0.040169 
*                             

2.45e-06 
***         
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Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_248 8.70e-07 
*** 

0.000151 
*** 

0.000146 
*** 

0.041009 
*   0.867695                             

5.26e-06 
***         

MOD_249 1.08e-07 
*** 

0.000234 
*** 

3.28e-05 
*** 

0.019887 
*                               

0.000968 
***       

MOD_250 2.30e-09 
*** 

7.08e-05 
*** 

3.82e-05 
*** 

0.022756 
*             

0.000855 
***                         

MOD_251 2.62e-07 
*** 

0.000243 
*** 

7.49e-05 
*** 

0.023086 
* 0.544804                           

0.003173 
**        

MOD_252 7.92e-09 
*** 

8.28e-05 
*** 

5.62e-05 
*** 0.02731 * 0.36255             

0.00218 
**                          

MOD_253 6.30e-09 
*** 

0.000143 
*** 

4.44e-05 
*** 

0.019696 
*         

0.005235 
**                              

MOD_254 2.46e-08 
*** 

1.07e-05 
*** 

0.000281 
*** 

0.019743 
*                   

0.000772 
***                   

MOD_255 7.51e-08 
*** 

9.39e-06 
*** 

0.000224 
*** 

0.024000 
* 0.220351               

0.001639 
**                   

MOD_256 2.30e-08 
*** 

0.000174 
*** 

5.98e-05 
*** 

0.023655 
* 0.472930     

0.011418 
*                             

MOD_257 1.75e-08 
*** 

2.61e-05 
*** 

0.000183 
*** 

0.023155 
*                         

0.003553 
**           

MOD_258 5.09e-08 
*** 

2.17e-05 
*** 

0.000139 
*** 

0.028993 
* 0.476376                       

0.011995 
*           

MOD_259 9.58e-09 
*** 

7.76e-06 
*** 

3.13e-05 
*** 0.0175 * 0.1662                                 0.0233 *   

MOD_260 2.64e-08 
*** 

3.90e-05 
*** 

0.000171 
*** 

0.018848 
*                       

0.030808 
*             

MOD_261 6.01e-08 
*** 

1.19e-05 
*** 

0.000109 
*** 

0.022752 
* 0.453807                     

0.099914 
.             

MOD_262 1.50e-09 
*** 

7.54e-06 
*** 

0.000133 
*** 

0.010017 
*                                     0.024277 * 

MOD_263 2.05e-08 
*** 

8.45e-06 
*** 

5.24e-05 
*** 0.0175 *   0.2305           0.0585 .                       

MOD_264 3.53e-08 
*** 

7.88e-06 
*** 

7.10e-05 
*** 0.0141 * 0.1766                             0.0778 .     

MOD_265 5.94e-08 
*** 

7.81e-06 
*** 

4.31e-05 
*** 0.015 * 0.136             0.265                     

MOD_266 4.28e-09 
*** 

8.93e-06 
*** 

0.000156 
*** 

0.011499 
*             

0.039402 
*                       

MOD_267 3.54e-08 
*** 

5.94e-05 
*** 

6.55e-05 
*** 0.0179 *   0.2739       0.1756                           

MOD_268 7.40e-09 
*** 

5.62e-05 
*** 

0.000133 
*** 

0.012509 
*           0.105742                               

MOD_269 6.46e-09 
*** 

8.65e-06 
*** 

0.000286 
*** 

0.008078 
**                                0.076690 .     

MOD_270 5.48e-08 
*** 

6.84e-06 
*** 

6.46e-05 
*** 0.0172 * 0.1382 0.2552                                 



372 
 

Model_ID 

Covariates 

Obs_min Area_Km2 Beaufort Sight_TTR Douglas 
SST-

MEAN 
SST-STD 

CHL-
MEAN 

CHL-STD 
ZEU-

MEAN 
ZEU-STD 

PAR-
MEAN 

PAR-STD DEP-STD 
SLO-

MEAN 
ASP-sin ASP-cos ASP-STD POP-STD Dist_200m W_north START_OBS 

MOD_271 3.76e-08 
*** 

7.72e-06 
*** 

6.14e-05 
*** 0.0167 * 0.2604   0.2645                               

MOD_272 9.07e-09 
*** 

1.95e-05 
*** 

0.00014 
*** 0.01151 *     0.14168                               

MOD_273 1.02e-08 
*** 

2.10e-05 
*** 

0.000259 
*** 

0.008515 
**               0.404799                         

MOD_274 9.38e-09 
*** 

1.82e-05 
*** 

0.000334 
*** 

0.009488 
**    0.376573                                     
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